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Method Property
CS-Wavelet Based on compressed sensing, assumes x is

sparse in the wavelet domain [SD11].
CS-Gradient Based on compressed sensing, leverages the

sparsity of the gradient of x in the Fourier do-
main.

TV Assumes that the x exhibits low total variation.
SS Incorporates a smoothness norm based on the

second derivatives of x.

Table 1: Summary of different methods

ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)
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ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
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before proposing our solution that exploits sparsity of the
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where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)
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ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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the choice of transform domain is constrained to the discrete
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trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
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pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
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where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
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image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,
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where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
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RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
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dered pixels are given by
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where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
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row of S is zero everywhere except for the pixel location that
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this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
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that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.

Methodologies

Compressed Sensing

Incoherence

22

Sensing Mechanism

X. Liu & U. R. Alim / Compressive Volume Rendering

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of missing pixels

C
oh

er
en

ce

Coherance results

 

 

haar−10−ld
haar−10−ran
haar−20−ld
haar−20−ran
par−ld
par−ran
db8−per−20−ran
db8−per−20−ld

Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)
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ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
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where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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main.

TV Assumes that the x exhibits low total variation.
SS Incorporates a smoothness norm based on the

second derivatives of x.

Table 1: Summary of different methods

ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-

FFT of original image FFT of gradient components 
0 2 4 6 8 10

x 104

0

5

10

15

20

25

30

35

40

45

50
FFT of green channel

0 2 4 6 8 10
x 104

0

5

10

15

20

25

30

35

40

45

50
Vertical derivative of green channel

0 2 4 6 8 10
x 104

0

5

10

15

20

25

30

35

40

45

50
Horizontal derivative of green channel

Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.

X. Liu & U. R. Alim / Compressive Volume Rendering

Method Property
CS-Wavelet Based on compressed sensing, assumes x is

sparse in the wavelet domain [SD11].
CS-Gradient Based on compressed sensing, leverages the

sparsity of the gradient of x in the Fourier do-
main.

TV Assumes that the x exhibits low total variation.
SS Incorporates a smoothness norm based on the

second derivatives of x.

Table 1: Summary of different methods

ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)
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Method Property
CS-Wavelet Based on compressed sensing, assumes x is

sparse in the wavelet domain [SD11].
CS-Gradient Based on compressed sensing, leverages the

sparsity of the gradient of x in the Fourier do-
main.

TV Assumes that the x exhibits low total variation.
SS Incorporates a smoothness norm based on the

second derivatives of x.

Table 1: Summary of different methods

ideas in the context of sparsely representing volumetric
datasets [WAG⇤12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N ⇥1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,

y = Ax̂, (2)

where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1�d) ||x̂||22  kAx̂k2
2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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considered here.
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vector, i.e. x = [x1 · · · xN ]
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attention to scalar-valued images with the assumption that
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interested in rendering a small subset of the pixels. The ren-
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where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ 2 RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm k·k0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if kx̂k0  k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y 2 RM . In particular,
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where A is an M ⇥ N sensing matrix with M ⌧ N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):
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2  (1+d) ||x̂||22 , (3)

where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
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dered pixels are given by
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where y = [y1 · · · yM ]T is an M ⇥ 1 (typically M ⌧ N) col-
umn vector and S is a M ⇥N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
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image x from the rendered pixels y. Since the number of ren-
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about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.
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Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
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entries. Formally, sparsity is quantified by the `0-norm k·k0,
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where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-

FFT of original image FFT of gradient components 
0 2 4 6 8 10

x 104

0

5

10

15

20

25

30

35

40

45

50
FFT of green channel

0 2 4 6 8 10
x 104

0

5

10

15

20

25

30

35

40

45

50
Vertical derivative of green channel

0 2 4 6 8 10
x 104

0

5

10

15

20

25

30

35

40

45

50
Horizontal derivative of green channel

Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)
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where d 2 (0,1) and k·k2 indicates the `2-norm. Intuitively,
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covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating d and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Yx approximates the original image well
with a few non-zero coefficients. Here, Y is an N ⇥N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SY�1x̂. (5)

Letting A = SY�1, it is clear that this equation corresponds
to the sensing equation 2, and recovery is possible as long
as the matrix SY�1 satisfies the RIC. Verifying the RIC is

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-

FFT of original image FFT of gradient components 
0 2 4 6 8 10

x 104

0

5

10

15

20

25

30

35

40

45

50
FFT of green channel

0 2 4 6 8 10
x 104

0

5

10

15

20

25

30

35

40

45

50
Vertical derivative of green channel

0 2 4 6 8 10
x 104

0

5

10

15

20

25

30

35

40

45

50
Horizontal derivative of green channel

Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)

c� 2015 The Author(s)
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1i< jn

|aT
i a j|

kaik2ka jk2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M ⌧ N, the coherence is
lower bounded according to µ(A)� 1/

p
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Y�1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Fx, and F is an N ⇥N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SF�1W�1
| {z }

A

x̂b, (7)

where W�1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = F�1W�1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter F which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m⇥ 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF�1x̂1, (8)

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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where F is the 2D DFT matrix, and x̂1 denotes the 2D DFT
of the horizontal gradient component x1. Observe that A =
SF�1 is a partial Fourier matrix provided that the location
of the pixels is random. An approximation of x̂1 is obtained
via the following `1 minimization:

minkx̂1k1 subject to kSF�1x̂1 �y1k2  e. (9)

An approximation of the DFT of the vertical component,
x̂2, is obtained similarly. Computing the pixel values from
gradient components is a problem that frequently arises in
gradient-domain image processing applications. We follow
the approach of Pérez et al. [PGB03] and apply a Poisson
solver—with Dirichlet boundary conditions—to the diver-
gence of the gradient.

3.2. Recovery via TV minimization (TV)
The total variation seminorm of an image is defined as:

kxkTV := Â
i, j

|xi+1, j � xi, j|+ |xi, j+1 � xi, j|, (10)

where xi, j — with slight abuse of notation — is the pixel
value corresponding to the pixel with image-space coordi-
nates (i, j). In other words, it is the sum of the `1 norms of
the horizontal and vertical components of the gradient ob-
tained via forward differencing. First proposed by Rudin et.
al [ROF92], the TV-norm is low for images that are smooth
and high for images that have high variability. It is also con-
nected with sparsity; images that are sparse in the gradient
domain also exhibit low TV. This property has been empiri-
cally known for some time and has been used in several ap-
plications such as denoising, inpainting, and recovery from
partial Fourier measurements (see e.g [CEPY05]). The pre-
cise theoretical connection with CS has only recently been
established [NW13].

Despite its success in image processing applications, TV
minimization (or regularization) has not been used in the
compressive rendering context which, at its core, is an im-
age restoration problem akin to inpainting. Our goal here is
to investigate how well this method performs as compared
to the CS-based methods described earlier. The precise min-
imization problem that we wish to solve is given by

minkxkTV subject to kSx�yk2  e, (11)

where S and y are as described in 1. This is a well-
studied minimization problem and fast algorithms have re-
cently gained popularity (e.g. split Bergman [GO09] or
NESTA [BBC11]).

3.3. Recovery in a Splines Space (SS)
The third method we consider can be regarded as a scattered
data approximation problem [XAE12]. It attempts to find a
smooth solution in a prescribed space that is spanned by the
uniform shifts of a kernel function j(t) where t 2 R2.

Let j1, . . . , jN denote the pixel locations corresponding to

the pixel values in x, and let k1, . . . ,kM denote the pixel lo-
cations corresponding to the pixel values in y. The goal is to
find the coefficients c = [c1 · · · cN ]

T of the approximation:

f (t) :=
N

Â
n=1

cnj(t� jn), (12)

such that the approximation closely matches the measured
pixel values, i.e. f (km)⇡ ym for m = 1, . . . ,M. Additionally,
it is desired that the function f (t) be smooth. A useful no-
tion of smoothness is provided by the second-order Beppo-
Levi seminorm. For functions g(t) and h(t), the second-
order Beppo-Levi inner-product is defined as

hg,hiBL2 := h∂t1t1 g,∂t1t1 hi+2h∂t1t2 g,∂t1t2 hi+ h∂t2t2 g,∂t2t2 hi
(13)

where h·, ·i denotes the standard L2 inner-product. The
BL2 inner-product induces a seminorm which we denote
as kgk2

BL2 := hg,giBL2 . In contrast to the TV seminorm in-
troduced earlier, the BL2 seminorm is defined in the con-
tinuous domain and measures smoothness via the second-
order derivatives. Smooth functions have a low BL2 norm
and vice-versa. Our minimization problem in this setting can
now be formulated as

min
f

lk fk2
BL2 +

M

Â
m=1

( f (km)� ym)
2, (14)

where the minimization is to be carried out over all func-
tions f that are of the form (12). The first term in the above
equation measures the smoothness of the solution f (t) by
the energy present in all of its second derivatives, and the
second term is a fidelity term that attempts to fit the function
f (t) to the available data.

In order to solve this minimization problem, we need to
choose a kernel function j(t). There are many choices avail-
able such as the bilinear or bicubic B-splines etc. In order to
ensure consistency with the other recovery methods, and to
obtain good quality approximations, we choose the optimal
interpolating cubic B-spline proposed by Blu et al. [BTU01].
It is defined as

b3
I (t) := b3(t)� 1

6
d2

dt2 b3(t), (15)

where b3(t) denotes the univariate uniform centered cubic
B-spline. The corresponding bivariate kernel is obtained via
a tensor product, i.e. j(t1, t2) = b3

I (t1)b3
I (t2). Observe that,

with this choice of j, the coefficient vector c is the same as
the vector x (since the kernel is interpolating), and our mini-
mization problem can be written equivalently (see [XAE12]
for details) as

min
x

kSx�yk2
2 +lxT Hx, (16)

where the N ⇥N matrix H is defined as

Hp,q = hj(·� jp),j(·� jq)iBL2 . (17)

Since (16) involves an `2 norm, we can differentiate with

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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where F is the 2D DFT matrix, and x̂1 denotes the 2D DFT
of the horizontal gradient component x1. Observe that A =
SF�1 is a partial Fourier matrix provided that the location
of the pixels is random. An approximation of x̂1 is obtained
via the following `1 minimization:

minkx̂1k1 subject to kSF�1x̂1 �y1k2  e. (9)

An approximation of the DFT of the vertical component,
x̂2, is obtained similarly. Computing the pixel values from
gradient components is a problem that frequently arises in
gradient-domain image processing applications. We follow
the approach of Pérez et al. [PGB03] and apply a Poisson
solver—with Dirichlet boundary conditions—to the diver-
gence of the gradient.

3.2. Recovery via TV minimization (TV)
The total variation seminorm of an image is defined as:

kxkTV := Â
i, j

|xi+1, j � xi, j|+ |xi, j+1 � xi, j|, (10)

where xi, j — with slight abuse of notation — is the pixel
value corresponding to the pixel with image-space coordi-
nates (i, j). In other words, it is the sum of the `1 norms of
the horizontal and vertical components of the gradient ob-
tained via forward differencing. First proposed by Rudin et.
al [ROF92], the TV-norm is low for images that are smooth
and high for images that have high variability. It is also con-
nected with sparsity; images that are sparse in the gradient
domain also exhibit low TV. This property has been empiri-
cally known for some time and has been used in several ap-
plications such as denoising, inpainting, and recovery from
partial Fourier measurements (see e.g [CEPY05]). The pre-
cise theoretical connection with CS has only recently been
established [NW13].

Despite its success in image processing applications, TV
minimization (or regularization) has not been used in the
compressive rendering context which, at its core, is an im-
age restoration problem akin to inpainting. Our goal here is
to investigate how well this method performs as compared
to the CS-based methods described earlier. The precise min-
imization problem that we wish to solve is given by

minkxkTV subject to kSx�yk2  e, (11)

where S and y are as described in 1. This is a well-
studied minimization problem and fast algorithms have re-
cently gained popularity (e.g. split Bergman [GO09] or
NESTA [BBC11]).

3.3. Recovery in a Splines Space (SS)
The third method we consider can be regarded as a scattered
data approximation problem [XAE12]. It attempts to find a
smooth solution in a prescribed space that is spanned by the
uniform shifts of a kernel function j(t) where t 2 R2.

Let j1, . . . , jN denote the pixel locations corresponding to

the pixel values in x, and let k1, . . . ,kM denote the pixel lo-
cations corresponding to the pixel values in y. The goal is to
find the coefficients c = [c1 · · · cN ]

T of the approximation:

f (t) :=
N

Â
n=1

cnj(t� jn), (12)

such that the approximation closely matches the measured
pixel values, i.e. f (km)⇡ ym for m = 1, . . . ,M. Additionally,
it is desired that the function f (t) be smooth. A useful no-
tion of smoothness is provided by the second-order Beppo-
Levi seminorm. For functions g(t) and h(t), the second-
order Beppo-Levi inner-product is defined as

hg,hiBL2 := h∂t1t1 g,∂t1t1 hi+2h∂t1t2 g,∂t1t2 hi+ h∂t2t2 g,∂t2t2 hi
(13)

where h·, ·i denotes the standard L2 inner-product. The
BL2 inner-product induces a seminorm which we denote
as kgk2

BL2 := hg,giBL2 . In contrast to the TV seminorm in-
troduced earlier, the BL2 seminorm is defined in the con-
tinuous domain and measures smoothness via the second-
order derivatives. Smooth functions have a low BL2 norm
and vice-versa. Our minimization problem in this setting can
now be formulated as

min
f

lk fk2
BL2 +

M

Â
m=1

( f (km)� ym)
2, (14)

where the minimization is to be carried out over all func-
tions f that are of the form (12). The first term in the above
equation measures the smoothness of the solution f (t) by
the energy present in all of its second derivatives, and the
second term is a fidelity term that attempts to fit the function
f (t) to the available data.

In order to solve this minimization problem, we need to
choose a kernel function j(t). There are many choices avail-
able such as the bilinear or bicubic B-splines etc. In order to
ensure consistency with the other recovery methods, and to
obtain good quality approximations, we choose the optimal
interpolating cubic B-spline proposed by Blu et al. [BTU01].
It is defined as

b3
I (t) := b3(t)� 1

6
d2

dt2 b3(t), (15)

where b3(t) denotes the univariate uniform centered cubic
B-spline. The corresponding bivariate kernel is obtained via
a tensor product, i.e. j(t1, t2) = b3

I (t1)b3
I (t2). Observe that,

with this choice of j, the coefficient vector c is the same as
the vector x (since the kernel is interpolating), and our mini-
mization problem can be written equivalently (see [XAE12]
for details) as

min
x

kSx�yk2
2 +lxT Hx, (16)

where the N ⇥N matrix H is defined as

Hp,q = hj(·� jp),j(·� jq)iBL2 . (17)

Since (16) involves an `2 norm, we can differentiate with

c� 2015 The Author(s)
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respect to x to obtain the following least-squares problem

(ST S+lH)x = ST y, (18)

whose solution yields the minimizer of (16). This least-
squares problem can be efficiently solved using the conju-
gate gradient method since the matrix (ST S+ lH) is sym-
metric and positive definite. The matrix H does not need to
be explicitly computed or stored since its action on a vector
x is equivalent to a filtering operation; the filter weights are
obtained via (17).

4. Results and Discussion
We generated volume rendered test images from datasets us-
ing our own volume renderer as well as Paraview. All of the
test images were generated at a resolution of 1200⇥1200 on
a workstation with a quad-core, 3.4 Ghz Intel R�CoreTMi7-
3770 CPU with 16GB RAM. All of our recovery experi-
ments were conducted in Matlab where we used the NESTA
solver [BBC11] to carry out `1 (CS-Wavelet, CS-Gradient)
and TV minimization. We used Matlab’s conjugate gradient
solver to solve the least-squares minimization (SS) problem
(16). For parameter settings, we used 20 for the standard de-
viation of the blurring filter F for the CS-Wavelet approach
which, according to the results of Sen and Darabi [SD11],
balances the tradeoff between incoherence and blurring ef-
fects. We used the same value of 10�2 for the tolerance and
stopping criteria of the NESTA solver in our CS-Wavelet,
CS-Gradient and TV experiments. This value was empiri-
cally chosen to provide a good tradeoff between recovery
quality and runtime. For the least-squares solver (SS), we
used the value 10�2 for the regularization parameter l as
suggested by Xu et. al [XAE12].

We recovered the images from a fraction of the pixels. We
experimented with different percentages of pixels that are
removed via two different pixel distribution algorithms ex-
plained in the following section. To measure recovery qual-
ity, we computed the peek signal-to-noise ratio (PSNR) val-
ues measured in decibels (dB). The PSNR is a well-known
quality metric and is a good way to quantify large differences
in recovery trends exhibited by the different techniques. We
also computed error images in the CIELUV colorspace ac-
cording to the work of Ljung et al. [LLYM04]. In addition
to measuring the recovery quality, we also measured the per-
formance of each method with respect to the timing for re-
covery.

4.1. Choice of Distribution Algorithm
Choosing a pixel distribution algorithm wisely is of signifi-
cant importance as our goal is to recover volume rendered
images from a small fraction of the pixels. A straightfor-
ward way of choosing pixels is the random distribution, ob-
tained by randomly drawing a number between 1 and N
where N is the total number of pixels. This strategy how-
ever leads to inhomogeneous regions (Fig. 4). A better strat-
egy is to distribute the pixels as uniformly as possible so

Figure 4: Masks with 50% missing pixels; left: random, and
right: LD via pixel shuffle.
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Figure 5: Random vs. LD distributions.

that the overall discrepancy [PH10] is low. A potential dis-
tribution that achieves low discrepancy (LD) can be obtained
by the Poisson disk sampling algorithm [PH10]. This algo-
rithm achieves very good blue-noise distributions. However,
a disadvantage is that it is not progressive, i.e. a distribution
with a high percentage of coverage does not contain a dis-
tribution with a low percentage of coverage. This is an im-
portant property for compressive rendering as it allows for
the progressive update of an image. A distribution that does
satisfy this property is provided by Anderson’s pixel shuffle
algorithm [And93]. This algorithm is based on the Fibonacci
numbers, and attempts to fill in the biggest gaps in the dis-
tribution to maintain a low overall discrepancy (Fig. 4).

4.2. Random Distribution vs. Pixel Shuffle
We used the two aforementioned distribution algorithms to
compare the recovery quality of all the methods. The quan-
titative results for the head dataset are shown in Fig. 5, and
some of the qualitative results are shown in Fig. 6. We can
observe that our CS-Gradient method produces slightly bet-
ter results compared to the CS-Wavelet method. The CS-
Wavelet method seems to be highly sensitive to the distri-
bution of pixels. In our tests, we observed that, when the
percentage of missing pixels is high, the random distribu-
tion leads to strong speckling artefacts. The LD distribution
achieves a lower coherence (Fig. 2) and thefore yields better
results. However, it also exhibits directional artefacts (Fig. 6:
second column). In comparison, our CS-Gradient method
fares much better (Fig. 5). It favours the random distribu-
tion when the fraction of missing pixels is high. This is to be
expected as the random distribution leads to partial Fourier

c� 2015 The Author(s)
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where F is the 2D DFT matrix, and x̂1 denotes the 2D DFT
of the horizontal gradient component x1. Observe that A =
SF�1 is a partial Fourier matrix provided that the location
of the pixels is random. An approximation of x̂1 is obtained
via the following `1 minimization:

minkx̂1k1 subject to kSF�1x̂1 �y1k2  e. (9)

An approximation of the DFT of the vertical component,
x̂2, is obtained similarly. Computing the pixel values from
gradient components is a problem that frequently arises in
gradient-domain image processing applications. We follow
the approach of Pérez et al. [PGB03] and apply a Poisson
solver—with Dirichlet boundary conditions—to the diver-
gence of the gradient.

3.2. Recovery via TV minimization (TV)
The total variation seminorm of an image is defined as:

kxkTV := Â
i, j

|xi+1, j � xi, j|+ |xi, j+1 � xi, j|, (10)

where xi, j — with slight abuse of notation — is the pixel
value corresponding to the pixel with image-space coordi-
nates (i, j). In other words, it is the sum of the `1 norms of
the horizontal and vertical components of the gradient ob-
tained via forward differencing. First proposed by Rudin et.
al [ROF92], the TV-norm is low for images that are smooth
and high for images that have high variability. It is also con-
nected with sparsity; images that are sparse in the gradient
domain also exhibit low TV. This property has been empiri-
cally known for some time and has been used in several ap-
plications such as denoising, inpainting, and recovery from
partial Fourier measurements (see e.g [CEPY05]). The pre-
cise theoretical connection with CS has only recently been
established [NW13].

Despite its success in image processing applications, TV
minimization (or regularization) has not been used in the
compressive rendering context which, at its core, is an im-
age restoration problem akin to inpainting. Our goal here is
to investigate how well this method performs as compared
to the CS-based methods described earlier. The precise min-
imization problem that we wish to solve is given by

minkxkTV subject to kSx�yk2  e, (11)

where S and y are as described in 1. This is a well-
studied minimization problem and fast algorithms have re-
cently gained popularity (e.g. split Bergman [GO09] or
NESTA [BBC11]).

3.3. Recovery in a Splines Space (SS)
The third method we consider can be regarded as a scattered
data approximation problem [XAE12]. It attempts to find a
smooth solution in a prescribed space that is spanned by the
uniform shifts of a kernel function j(t) where t 2 R2.

Let j1, . . . , jN denote the pixel locations corresponding to

the pixel values in x, and let k1, . . . ,kM denote the pixel lo-
cations corresponding to the pixel values in y. The goal is to
find the coefficients c = [c1 · · · cN ]

T of the approximation:

f (t) :=
N

Â
n=1

cnj(t� jn), (12)

such that the approximation closely matches the measured
pixel values, i.e. f (km)⇡ ym for m = 1, . . . ,M. Additionally,
it is desired that the function f (t) be smooth. A useful no-
tion of smoothness is provided by the second-order Beppo-
Levi seminorm. For functions g(t) and h(t), the second-
order Beppo-Levi inner-product is defined as

hg,hiBL2 := h∂t1t1 g,∂t1t1 hi+2h∂t1t2 g,∂t1t2 hi+ h∂t2t2 g,∂t2t2 hi
(13)

where h·, ·i denotes the standard L2 inner-product. The
BL2 inner-product induces a seminorm which we denote
as kgk2

BL2 := hg,giBL2 . In contrast to the TV seminorm in-
troduced earlier, the BL2 seminorm is defined in the con-
tinuous domain and measures smoothness via the second-
order derivatives. Smooth functions have a low BL2 norm
and vice-versa. Our minimization problem in this setting can
now be formulated as

min
f

lk fk2
BL2 +

M

Â
m=1

( f (km)� ym)
2, (14)

where the minimization is to be carried out over all func-
tions f that are of the form (12). The first term in the above
equation measures the smoothness of the solution f (t) by
the energy present in all of its second derivatives, and the
second term is a fidelity term that attempts to fit the function
f (t) to the available data.

In order to solve this minimization problem, we need to
choose a kernel function j(t). There are many choices avail-
able such as the bilinear or bicubic B-splines etc. In order to
ensure consistency with the other recovery methods, and to
obtain good quality approximations, we choose the optimal
interpolating cubic B-spline proposed by Blu et al. [BTU01].
It is defined as

b3
I (t) := b3(t)� 1

6
d2

dt2 b3(t), (15)

where b3(t) denotes the univariate uniform centered cubic
B-spline. The corresponding bivariate kernel is obtained via
a tensor product, i.e. j(t1, t2) = b3

I (t1)b3
I (t2). Observe that,

with this choice of j, the coefficient vector c is the same as
the vector x (since the kernel is interpolating), and our mini-
mization problem can be written equivalently (see [XAE12]
for details) as

min
x

kSx�yk2
2 +lxT Hx, (16)

where the N ⇥N matrix H is defined as

Hp,q = hj(·� jp),j(·� jq)iBL2 . (17)

Since (16) involves an `2 norm, we can differentiate with
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respect to x to obtain the following least-squares problem

(ST S+lH)x = ST y, (18)

whose solution yields the minimizer of (16). This least-
squares problem can be efficiently solved using the conju-
gate gradient method since the matrix (ST S+ lH) is sym-
metric and positive definite. The matrix H does not need to
be explicitly computed or stored since its action on a vector
x is equivalent to a filtering operation; the filter weights are
obtained via (17).

4. Results and Discussion
We generated volume rendered test images from datasets us-
ing our own volume renderer as well as Paraview. All of the
test images were generated at a resolution of 1200⇥1200 on
a workstation with a quad-core, 3.4 Ghz Intel R�CoreTMi7-
3770 CPU with 16GB RAM. All of our recovery experi-
ments were conducted in Matlab where we used the NESTA
solver [BBC11] to carry out `1 (CS-Wavelet, CS-Gradient)
and TV minimization. We used Matlab’s conjugate gradient
solver to solve the least-squares minimization (SS) problem
(16). For parameter settings, we used 20 for the standard de-
viation of the blurring filter F for the CS-Wavelet approach
which, according to the results of Sen and Darabi [SD11],
balances the tradeoff between incoherence and blurring ef-
fects. We used the same value of 10�2 for the tolerance and
stopping criteria of the NESTA solver in our CS-Wavelet,
CS-Gradient and TV experiments. This value was empiri-
cally chosen to provide a good tradeoff between recovery
quality and runtime. For the least-squares solver (SS), we
used the value 10�2 for the regularization parameter l as
suggested by Xu et. al [XAE12].

We recovered the images from a fraction of the pixels. We
experimented with different percentages of pixels that are
removed via two different pixel distribution algorithms ex-
plained in the following section. To measure recovery qual-
ity, we computed the peek signal-to-noise ratio (PSNR) val-
ues measured in decibels (dB). The PSNR is a well-known
quality metric and is a good way to quantify large differences
in recovery trends exhibited by the different techniques. We
also computed error images in the CIELUV colorspace ac-
cording to the work of Ljung et al. [LLYM04]. In addition
to measuring the recovery quality, we also measured the per-
formance of each method with respect to the timing for re-
covery.

4.1. Choice of Distribution Algorithm
Choosing a pixel distribution algorithm wisely is of signifi-
cant importance as our goal is to recover volume rendered
images from a small fraction of the pixels. A straightfor-
ward way of choosing pixels is the random distribution, ob-
tained by randomly drawing a number between 1 and N
where N is the total number of pixels. This strategy how-
ever leads to inhomogeneous regions (Fig. 4). A better strat-
egy is to distribute the pixels as uniformly as possible so

Figure 4: Masks with 50% missing pixels; left: random, and
right: LD via pixel shuffle.
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Figure 5: Random vs. LD distributions.

that the overall discrepancy [PH10] is low. A potential dis-
tribution that achieves low discrepancy (LD) can be obtained
by the Poisson disk sampling algorithm [PH10]. This algo-
rithm achieves very good blue-noise distributions. However,
a disadvantage is that it is not progressive, i.e. a distribution
with a high percentage of coverage does not contain a dis-
tribution with a low percentage of coverage. This is an im-
portant property for compressive rendering as it allows for
the progressive update of an image. A distribution that does
satisfy this property is provided by Anderson’s pixel shuffle
algorithm [And93]. This algorithm is based on the Fibonacci
numbers, and attempts to fill in the biggest gaps in the dis-
tribution to maintain a low overall discrepancy (Fig. 4).

4.2. Random Distribution vs. Pixel Shuffle
We used the two aforementioned distribution algorithms to
compare the recovery quality of all the methods. The quan-
titative results for the head dataset are shown in Fig. 5, and
some of the qualitative results are shown in Fig. 6. We can
observe that our CS-Gradient method produces slightly bet-
ter results compared to the CS-Wavelet method. The CS-
Wavelet method seems to be highly sensitive to the distri-
bution of pixels. In our tests, we observed that, when the
percentage of missing pixels is high, the random distribu-
tion leads to strong speckling artefacts. The LD distribution
achieves a lower coherence (Fig. 2) and thefore yields better
results. However, it also exhibits directional artefacts (Fig. 6:
second column). In comparison, our CS-Gradient method
fares much better (Fig. 5). It favours the random distribu-
tion when the fraction of missing pixels is high. This is to be
expected as the random distribution leads to partial Fourier
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that the overall discrepancy [PH10] is low. A potential dis-
tribution that achieves low discrepancy (LD) can be obtained
by the Poisson disk sampling algorithm [PH10]. This algo-
rithm achieves very good blue-noise distributions. However,
a disadvantage is that it is not progressive, i.e. a distribution
with a high percentage of coverage does not contain a dis-
tribution with a low percentage of coverage. This is an im-
portant property for compressive rendering as it allows for
the progressive update of an image. A distribution that does
satisfy this property is provided by Anderson’s pixel shuffle
algorithm [And93]. This algorithm is based on the Fibonacci
numbers, and attempts to fill in the biggest gaps in the dis-
tribution to maintain a low overall discrepancy (Fig. 4).

4.2. Random Distribution vs. Pixel Shuffle
We used the two aforementioned distribution algorithms to
compare the recovery quality of all the methods. The quan-
titative results for the head dataset are shown in Fig. 5, and
some of the qualitative results are shown in Fig. 6. We can
observe that our CS-Gradient method produces slightly bet-
ter results compared to the CS-Wavelet method. The CS-
Wavelet method seems to be highly sensitive to the distri-
bution of pixels. In our tests, we observed that, when the
percentage of missing pixels is high, the random distribu-
tion leads to strong speckling artefacts. The LD distribution
achieves a lower coherence (Fig. 2) and thefore yields better
results. However, it also exhibits directional artefacts (Fig. 6:
second column). In comparison, our CS-Gradient method
fares much better (Fig. 5). It favours the random distribu-
tion when the fraction of missing pixels is high. This is to be
expected as the random distribution leads to partial Fourier
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• We recovered the images from a fraction of the pixels and 
experimented with different percentages of pixels.

• To measure recovery quality
1. Peek signal-to-noise ratio (
2. Error images
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• To measure recovery quality 
1. Peek signal-to-noise ratio (PSNR) 
2. Error images in the CIELUV colorspace.
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Conclusion

• We presented three different methods for recovering images from a 
subset of the pixels

• CS-based approaches are not suitable for this problem as we are 
restricted to making pixel measurements

• Answer the question of which method is the most suitable for 
compressive volume rendering via a very small fraction of rendered 
pixels.
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End

Thank you!
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Performance
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Resolution

Rendering 
Time

600 * 600 900 * 9001200 * 1200

CS-Wavelet

CS-Gradient

TV

SS

0.25 0.561

0.024

0.011

0.011

0.003

• Rendering time for 1200 * 
1200 image is the baseline

• Relative recovery time for 
different methods is 
compared against each 
other


