

Compressive Volume Rendering

Xiaoyang Liu MSc Student

Department of Computer Science

Usman R. Alim Assistant Professor

I. Motivation

2. Research Question

- 3. Methodologies
- 4. Results

5. Conclusion

High Density Displays ►

Ray-Casting for Volume Rendering

Motivation

High Density Displays ►

Ray-Casting for Volume Rendering

Motivation

High Density Displays ►

Ray-Casting for Volume Rendering

Motivation

I. Motivation

2. Research Question

3. Methodologies

4. Results

5. Conclusion

I. Motivation

2. Research Question

3. Methodologies

4. Results

5. Conclusion

- Random Distribution
 - Inhomogeneous regions

Low-Discrepancy Distribution
Allow for the progressive update

- Random Distribution
 - Inhomogeneous regions

Low-Discrepancy Distribution
Allow for the progressive update

- Random Distribution
 - Inhomogeneous regions

Low-Discrepancy Distribution
Allow for the progressive update

- Random Distribution
 - Inhomogeneous regions

Low-Discrepancy Distribution
Allow for the progressive update

Masks for 50% missing pixels

Random Distribution Low-Discrepancy (LD) Distribution via Pixel Shuffle

 $\mathbf{y} = \mathbf{A}\hat{\mathbf{x}}$

 $\mathbf{y} = \mathbf{S} \mathbf{\Phi}^{-1} \mathbf{W}^{-1} \hat{\mathbf{x}}_b$

CS-Wavelet [Sen and Darabi, 2011, TVCG]

Compressed Sensing ►

Sensing Mechanism

Restricted Isometry Condition (RIC)

Compressed Sensing ►

 $\mathbf{y} = \mathbf{S} \Phi^{-1} \mathbf{W}$

Sensing Mechanism

Restricted Isometry Condition (RIC)

CS-Wavelet [Sen and Darabi, 2011, TVCG]

Compressed Sensing ►

 $\mathbf{y} = \mathbf{A}\hat{\mathbf{x}}$

 $\mathbf{y} = \underbrace{\mathbf{S} \Phi^{-1} \mathbf{W}^{-1}}_{\mathbf{A}} \hat{\mathbf{x}}_b$

Sensing Mechanism ►

Restricted Isometry Condition (RIC)

Compressed Sensing ►

 $\mathbf{y} = \mathbf{S} \boldsymbol{\Phi}^{-1} \mathbf{W}$

Sensing Mechanism

Restricted Isometry Condition (RIC)

 $N \times 1$

 $\hat{\mathbf{x}}_{b}$

 $\hat{\mathbf{x}}_b$

Compressed Sensing

 $\mathbf{y} = \mathbf{S} \boldsymbol{\Phi}^{-1} \mathbf{W}$

Sensing Mechanism **•**

Incoherence

Compressed Sensing ►

Sensing Mechanism **•**

Incoherence

VISAGG Visualization and Graphics Group

VISAGG Visualization and Graphics Group

Compressed Sensing ►

Sensing Mechanism **•**

Incoherence

VISAGG Visualization and Graphics Group

CS-Gradient

Incoherence

Sparsity in gradient domain

CS-Gradient

Incoherence ►

Sparsity in gradient domain

VISAGG Visualization and Graphics Group

CS-Gradient

Incoherence ►

Sparsity in gradient domain

CS-Gradient

Incoherence ►

Sparsity in gradient domain

CS-Gradient

Visualization and Graphics Group

Total Variation(TV) Minimization

$$\min \|\mathbf{x}\|_{TV}$$
 subject to $\|\mathbf{S}\mathbf{x} - \mathbf{y}\|_2 \le \varepsilon$

Smoothness Splines(SS)

I. Motivation

2. Research Question

3. Methodologies

4. Results

5. Conclusion

 We recovered the images from a fraction of the pixels and experimented with different percentages of pixels.

- To measure recovery quality
 - 1. Peek signal-to-noise ratio (
 - 2. Error images

Visualization and Graphics Group

 We recovered the images from a fraction of the pixels and experimented with different percentages of pixels.

- To measure recovery quality
 - 1. Peek signal-to-noise ratio (
 - 2. Error images

 We recovered the images from a fraction of the pixels and experimented with different percentages of pixels.

To measure recovery quality

- 1. Peek signal-to-noise ratio (PSNR)
- 2. Error images in the CIELUV colorspace.

 We recovered the images from a fraction of the pixels and experimented with different percentages of pixels.

To measure recovery quality

- 1. Peek signal-to-noise ratio (PSNR)
- 2. Error images in the CIELUV colorspace.

Ground Truth

Ground Truth

Visualization and Graphics Group

Visualization and Graphics Group

Visualization and Graphics Group

Ground Truth

Visualization and Graphics Group

Visualization and Graphics Group

Visualization and Graphics Group

Visualization and Graphics Group

Visualization and Graphics Group

I. Motivation

2. Research Question

3. Methodologies

4. Results

5. Conclusion

 We presented three different methods for recovering images from a subset of the pixels

CS-based approaches are not suitable for this problem as we are restricted to making pixel measurements

We presented three different methods for recovering images from a subset of the pixels

CS-based approaches are not suitable for this problem as we are restricted to making pixel measurements

We presented three different methods for recovering images from a subset of the pixels

CS-based approaches are not suitable for this problem as we are restricted to making pixel measurements

We presented three different methods for recovering images from a subset of the pixels

 CS-based approaches are not suitable for this problem as we are restricted to making pixel measurements

Thank you!

Xiaoyang Liu MSc Student <u>xiaoyali@ucalgary.ca</u> <u>http://visagg.cpsc.ucalgary.ca</u>

