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ABSTRACT

We present a novel image representation method based on shift-
invariant spaces. Unlike existing rendering methods, our proposed
approach consists of two steps: an analog acquisition step that
traces rays through the scene, and a subsequent digital processing
step that filters the intermediate digital image to obtain the coeffi-
cients of a minimum-error continuous image approximation. Our
approach can be easily incorporated in existing renderers with very
little change and with little-to-no computational overhead. Addi-
tionally, we introduce the necessary tools needed to analyze the
smoothing and post-aliasing properties of the minimum-error ap-
proximations.

We provide examples of spaces — generated by the uniform
B-splines — that can be readily used in conjunction with the
two-dimensional Cartesian grid. Our experimental results demon-
strate that minimum-error approximations significantly enhance
image quality by preserving high-frequency details that are usually
smoothed out by existing image anti-aliasing approaches.

1 INTRODUCTION

The rendering process usually culminates in a set of pixel values
that are distributed in a Cartesian fashion on the two-dimensional
image plane. The common viewpoint is to treat the pixels as point
samples of the underlying continuous 2D image. In other words,
the pixels serve as a point-sampled discretization of the image on
a Cartesian grid. In order to avoid undesirable aliasing artifacts in
the rendered image, an anti-aliasing filter must be employed. The
design of such a filter is usually dictated by Shannon’s sampling
theory i.e., the anti-aliasing filter is chosen so that it resembles the
sinc function as closely as possible.

In this paper, we introduce alternate image representations that
are based on recent advances in the fields of signal processing and
approximation theory. Particularly, we propose to approximate the
image in a shift-invariant space: a vector space spanned by the in-
teger translates of a generating function. In light of this represen-
tation, the image is approximated in a continuous fashion by a set
of coefficients, and the goal of the rendering process is to acquire
the coefficients of the approximation in a chosen space. Computa-
tionally, this is very similar to the traditional viewpoint described
above; several rays are traced per pixel and are then averaged ac-
cording to a continuous filter. In fact, Shannon’s sinc-based repre-
sentations are a special case of this more general framework. The
important difference, however, is the use of subsequent digital fil-
ters which, as we shall see, lead to renditions that are able to re-
cover high-frequency details that are typically lost during the anti-
aliasing operation. This digital filtering is done entirely in the im-
age space and therefore, its cost is negligible as compared to the
cost of ray-tracing. In essence, with little change to existing code,
we can obtain higher quality images without incurring additional
computational overhead.
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Even though shift-invariant spaces have been successfully em-
ployed in image processing applications, they have not been used
in rendering. The contributions of this paper are summarized as
follows:

• We apply shift-invariant spaces to rendering.

• We analyze the process of approximating images in shift-
invariant spaces from the perspective of rendering, and rewrite
the orthogonal projection equation in a form that is much
more amenable to inclusion in the rendering pipeline.

• We investigate, analytically and empirically, the impact of B-
spline-based spaces on rendering quality.

2 RELATED WORK

As already mentioned, the conventional approach to sampling im-
ages follows Shannon’s sampling theorem [22] that deals with the
perfect reconstruction of a bandlimited function. Since the func-
tion sinc(x) is interpolating (it is 1 at x = 0 and 0 at all the other
integers), earlier image filtering techniques focused on designing
interpolating anti-alisaing filters. Towards this end, the oft-cited
work of Mitchell and Netravali [18] deals with the design of tun-
able cubic prefilters. Other filters that have been used in Computer
Graphics include the Gaussian filter [7] and the windowed sinc fil-
ter [24]. Marschner and Lobb [16] also used similar ideas to design
cubic reconstruction filters for volume rendering. The interpolation
property was used by Möller et al. [19] who used a Taylor-series ex-
pansion in the spatial domain to design smooth filters for function
and derivative reconstruction.

Rendered images are rarely bandlimited since they possess edges
and other sharp features. Furthermore, the interpolation criterion is
excessively limiting since what we really want is an approximation
that is close to the underlying function, whether it is bandlimited or
not. Shift-invariant spaces offer a viable alternative that is based on
the idea of minimizing the error (in the least-squares sense) between
the true function and its approximation in a chosen space [8, 25].
From a practical standpoint, such spaces have the advantage that the
generator — unlike the sinc — is typically a compact piece-wise
polynomial function that can be efficiently used for interpolation
and/or quasi-interpolation [4].

Shift-invariant spaces are not new to Graphics. In particular,
in the field of volume visualization, there has been some recent
progress in the way of scalar reconstruction from point samples.
One line of research has focused on designing non-separable re-
construction filters for non-Cartesian lattices [10,11,17] — the mo-
tivation being the fact that non-Cartesian lattices such as the body-
centered cubic (BCC) and face-centered cubic (FCC) lattices lead to
a more efficient packing of spheres [6]. Another line of research has
dealt with the problem of approximating derived quantities from the
point samples [1, 2, 13]. In either case, the design is constrained to
be suboptimal since the volumetric data has already been acquired.
In rendering on the other hand, the minimum error approximation
scenario — obtained by orthogonally projecting the image to the
target space [25] — is fully realizable (Section 4). This makes
rendering a perfect fit for shift-invariant spaces. Even though the
need to incorporate these spaces in the rendering pipeline has been



acknowledged [20, Chapter 7], we are unaware of any work that
demonstrates their potential impact on rendering quality.

The remainder of the paper is organized as follows. We present
a brief overview of shift-invariant spaces in Section 3. In Section 4,
we propose our novel image acquisition and processing steps in the
context of rendering. Experimental results are presented in Sec-
tion 5. Finally, Section 6 concludes the paper with an eye on topics
that deserve further investigation.

3 PRELIMINARIES

For the sake of clarity, we present the necessary mathematical con-
cepts in 1D with the implicit assumption that the theory can be eas-
ily extended to the 2D Cartesian lattice via a simple tensor product.
A more thorough treatment can be found in surveys by Unser [25]
(univariate) and Alim [1, Chapter 1] (multivariate).

We denote the space of finite-energy real-valued univariate func-
tions as L2(R). For functions f and g that belong to L2(R),
we denote their inner product as

〈
f, g

〉
:=

∫
R
f(x)g(x)dx. The

function space L2(R) is a Hilbert space with respect to this inner
product. In other words, the L2-norm of a function f is given by

‖f‖ :=
√〈

f, f
〉
. Note that L2(R) includes the space of bandlim-

ited functions but has a richer structure.
We denote the Fourier transform of a function f as f̂(ω) :=∫

R
f(x) exp(−ıωx)dx, where ı :=

√
−1. When there is no

room for ambiguity, we also use the same notation to denote the
discrete-time Fourier transform of a sequence c[·], i.e. ĉ(ω) :=∑

n∈Z
c[n] exp(−ıωn). Likewise, we make use of the symbol ‘∗’

to denote both continuous and discrete convolutions.

Shift-Invariant Spaces: A shift-invariant space spanned by a
generating function ϕ is defined as follows:

Vh(ϕ) :=

{
g(x) =

∑

n∈Z

c[n]ϕ(
x

h
− n) : c ∈ l2(Z)

}
, (1)

where h > 0 is a parameter that controls the scale of the space,
and l2(Z) is the space of finite-energy coefficient sequences, i.e.∑

n∈Z
|c[n]|2 < ∞. Vh(ϕ) is therefore the space spanned by the

scaled and translated versions of the generating function ϕ. Ob-
serve that if we set ϕ = sinc, we obtain the familiar space of
bandlimited functions. In order to ensure that Vh(ϕ) ⊂ L2(R),
the generator ϕ must satisfy certain admissibility criteria [25]. The
sinc is certainly an admissible generator but there are other com-
pact ones that are computationally more efficient as described be-
low. Unless otherwise stated, we assume that ϕ is an even function,
i.e. ϕ(−x) = ϕ(x).

Minimum-Error Approximation: For an admissible generator
ϕ, there exists a biorthogonal dual generator ϕ̊ such that

〈
ϕ, ϕ̊(· −

n)
〉
= δ[n], where δ[·] is the Kronecker delta sequence (δ[n] = 1 if

n = 0 and 0 otherwise), and both ϕ and ϕ̊ span the same space, i.e.
Vh(ϕ) = Vh(ϕ̊). This duality relationship leads to the following
series-expression for ϕ̊:

ϕ̊(x) =
∑

n∈Z

a−1
ϕ [n]ϕ(x+ n), (2)

where aϕ[n] :=
〈
ϕ,ϕ(· − n)

〉
is the auto-correlation sequence of

ϕ, and a−1
ϕ is its inverse, i.e. (aϕ ∗ a−1

ϕ )[n] = δ[n]. Equivalently,

in the Fourier domain, we have â−1
ϕ (ω) = 1/âϕ(ω), and

̂̊ϕ(ω) = ϕ̂(ω)

âϕ(ω)
. (3)

Note that the integer translates of the sinc function form an orthog-
onal system. The sinc is therefore self-dual.
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Figure 1: Plots of the linear (β1(x) - left) and cubic (β3(x) - right)
B-splines and their duals (dashed).

The approximation fapp(x) ∈ Vh(ϕ) of a function f(x) ∈
L2(R) that minimizes the L2-error ‖f − fapp‖ is obtained by or-
thogonally projecting f onto Vh(ϕ). This is realized by taking a
sequence of inner-products with respect to the dual ϕ̊, i.e.

f(x) ≈ fapp(x) =
∑

n∈Z

1
h

〈
f, ϕ̊(

·
h
− n)

〉

︸ ︷︷ ︸
c[n]

ϕ(
x

h
− n). (4)

As h → 0, the error ‖f − fapp‖ → 0 at a rate that depends on
the smoothness of f as well as the approximation capabilities of ϕ.
Eq. (4) is at the heart of our novel image representation methodol-
ogy and we describe in Section 4 how it can be efficiently incorpo-
rated in the rendering pipeline.

Uniform B-splines: The centered B-splines constitute a fam-
ily of compact generating functions that are widely used in prac-
tice. They are piece-wise polynomial functions that have closed-
form expressions in both the spatial and Fourier domains. We shall
therefore make use of them to approximate images in rendering.
Additional details on B-splines can be found in Unser et al. [26].

We denote the k-th (k ≥ 0) degree centered B-spline as βk(x).
It is defined recursively as

βk(x) := (βk−1 ∗ β0)(x) (k ≥ 1), (5)

where β0(x) is the familiar box function (β0(x) = 1 when x ∈
[−1/2, 1/2] and 0 otherwise). βk is therefore obtained by succes-
sive convolutions of the box function, each convolution increasing
the polynomial degree and support by 1. The following two equa-
tions can be readily used to evaluate B-splines in the spatial and
Fourier domains respectively.

βk(x) =

k+1∑

j=0

(−1)j

k!
C(k + 1, j)max(0, x+

k + 1

2
− j)k,

β̂k(ω) = sinc(ω)k+1,

(6)

where C(·, ·) is the binomial coefficient and sinc(ω) := sin(ω/2)
ω/2

.

Even though βk is compactly supported, its dual β̊k is not, and
decays at a rate that depends on the degree k. The only exception is
β0(x) which is self-dual. Fig. 1 shows the familiar linear (tent) and
cubic B-splines as well as their duals.

4 RENDERING IN SHIFT-INVARIANT SPACES

The inner product in Eq. (4) plays the role of a point spread func-
tion (PSF) in an imaging device. If we convolve the function f with
a scaled version of the dual ϕ before point-sampling, we would
obtain the ideal approximation in the space Vh(ϕ). This is obvi-
ously not the case in digital imaging modalities such as photog-
raphy, magnetic resonance imaging (MRI) or computed tomogra-
phy (CT), where the choice of the PSF is usually constrained by
hardware design considerations. The minimum-error approxima-
tion is therefore not attainable and post-processing techniques are



Table 1: Example spaces used in our experiments

ϕ(x) Name Polynomial pieces pϕ[n] aϕ[n]

β0(x) Box
1 when x ∈ [−1/2, 1/2],

δ[n] δ[n]
0 otherwise

β1(x) Tent
1− |x| when x ∈ [−1, 1],

δ[n] [ 1
6
, 2
3
, 1
6
]

0 otherwise

β3(x) Cubic

1
6
(3|x|3−6|x|2+4) when |x|∈[0,1],

[ 1
6
, 2
3
, 1
6
] [ 1

5040
, 1
42
, 397
1680

, 151
315

, 397
1680

, 1
42
, 1
5040

]1
6
(−|x|3+6|x|2−12|x|+8) when |x|∈(1,2),

0 otherwise

designed to counter the effect of the non-ideal acquisition [3]. Ren-
dering on the other hand does not suffer from this problem since we
can freely choose the PSF (anti-aliasing prefilter). In this section,
we describe how Eq. (4) can be efficiently evaluated using a combi-
nation of an analog acquisition step followed by a digital processing
step.

As before, for the sake of clarity, we focus on the univariate set-
ting. Additionally, without loss of generality, we assume that h = 1
and that ϕ is a compact generator. The fact that ϕ̊ is not compactly
supported might lead one to believe that the evaluation of the inner
product in Eq. (4) is an expensive operation. However, this is not
the case since we can use the primal representation of the dual ϕ̊
(cf. Eq. (2)) as leverage. In particular, we have

c[n] =
〈
f, ϕ̊(· − n)

〉

=
〈
f,

∑

m

a−1
ϕ [m]ϕ

(
· − (n−m)

)〉

=
∑

m

a−1
ϕ [m]

〈
f, ϕ

(
· − (n−m)

)〉
︸ ︷︷ ︸

r[n−m]

= (a−1
ϕ ∗ r)[n],

(7)

where r[m] :=
〈
f, ϕ(·−m)

〉
. Since ϕ is compactly supported, the

sequence r[·] can be efficiently evaluated via an analog anti-aliasing
operation. Once the approximation coefficients have been obtained,
the continuous approximation fapp can be used to get a discrete
version by sampling at the pixel locations. The final rendered image
is thus given by

fapp[m] = fapp(m) =
∑

n

(a−1
ϕ ∗ r)[n]ϕ(m− n)

= ( r︸︷︷︸
acquisition

∗ a−1
ϕ ∗ pϕ︸ ︷︷ ︸

processing

)[m],
(8)

where pϕ[n] := ϕ(n) is the sequence obtained by sampling ϕ at
the integers. The overall rendering process therefore consists of
two steps:

1. Acquisition: This is an analog operation that measures the se-
quence

r[n] =
〈
f, ϕ(· − n)

〉
. (9)

In the context of ray-tracing, it is akin to anti-aliasing i.e.,
it numerically evaluates the inner product integral by tracing
several rays that are distributed over the support of the trans-
lated function ϕ(x− n).

2. Processing: This is a purely digital operation that convolves
the acquired sequence r with the inverse autocorrelation se-
quences a−1

ϕ and the sampled sequence pϕ.

Figure 2: The rendering pipeline for minimum-error image repre-
sentation. For each pixel, the acquisition step numerically evaluates
Eq. (9) by tracing several rays through the support of the generator
ϕ centered at the pixel location (the support of the bilinear B-spline
is indicated). The resulting sequence is then digitally filtered to
yield the final pixel values.
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Figure 3: The minimum error kernel E(ω) for various approxima-
tion spaces.

Fig. 2 summarizes this two-stage rendering pipeline. By retaining
the sequence r[·], one can also easily implement straightforward
operations such as image resizing. Even though we have presented
this pipeline for static images, we can easily extend it to incorporate
dynamic images as well.

4.1 Example spaces

We now give examples of spaces based on the uniform B-splines
that can be readily incorporated in an existing renderer with very
little change. Table 1 lists the various ingredients needed to imple-
ment the minimum-error box, tent and cubic filters. Observe that
the box filter that is widely used in practice does indeed perform
an orthogonal projection since there is no need to perform the dig-
ital processing step. However, the similarity ends there since the
remaining spaces require a non-trivial digital processing step.

Intuitively, the greater the support size of ϕ, the lower the error.
It is instructive to quantitatively compare approximation spaces so
that one can reason about the capabilities provided by a particu-



lar space. The L2-error between a function f and its orthogonal
projection fapp ∈ Vh(ϕ) is given by the following Fourier domain
expression [3, 8]:

‖f − fapp‖2 =
1

2π

∫

R

|f̂(ω)|2E(hω)dω, where

E(ω) := 1− |ϕ̂(ω)|2
âϕ(ω)

.

(10)

Since the error kernel E(ω) is independent of f , we can use it
to compare the frequency behaviour of different approximation
spaces. Fig. 3 plots E(ω) for the spaces listed in Table 1. As
the support size grows, the minimum error approximation recovers
more of the spectrum within the passband (ω ∈ [−π, π]). In ren-
dered images, we expect that this behaviour should lead to a better
preservation of high-frequency details which in turn should result in
increased overall clarity and sharpness. On the other hand, outside
the passband (|ω| > π), the trend is reversed and more compact
generators lead to lower post-aliasing errors.

4.2 Comparison with existing techniques

In this section, we compare the frequency behaviour of our
minimum-error rendering technique with that of existing techniques
that are based on Shannon’s sampling theory. Recall that existing
techniques implement the analog acquisition step (Eq. (9)) without
a subsequent digital processing step; the assumption is that the pixel
values are to be interpolated with the sinc function. Since the cost
of the digital processing step is negligible as compared to the ana-
log acquisition step, our comparison is based on the support size of
the analog prefilter (generator) in Eq. (9). We consider two cases:
the tent filter with and without a digital processing step, and the cu-
bic filter of Mitchell and Netravali (MN) [18] as compared to the
minimum-error approximation in the space generated by the cubic
B-spline.

The L2-error of existing rendering techniques can be expressed
— in a manner similar to Eq. (10) — in terms of an error kernel [3].
Let fBL(x) be the Shannon-based approximation given by

fBL(x) :=
∑

n∈Z

〈
f, ϕ(· − n)

〉
sinc(2πx− n). (11)

The L2-error ‖f − fBL‖ can be expressed in the Fourier domain as

‖f − fBL‖2 =
1

2π

∫

R

|f̂(ω)|2EBL(ω)dω, where

EBL(ω) := 1− 2ϕ̂(ω)χ[−π,π](ω) + |ϕ̂(ω)|2,
(12)

and χ[−π,π](ω) is the indicator function of the interval [−π, π]. The
similarity between Eqs. (10) and (12) allows us to directly compare
the error kernels E(ω) and EBL(ω). This obviously is an idealiza-
tion since the sinc is expensive and rarely used in practice. Our
comparison is therefore biased in favour of existing techniques.

Observe that the MN filter (with B = 1/3 and C = 1/3) can be
written in terms of the B-splines as

ϕMN(x) :=
7

3
β3(x)−

2

3

(
β2(x− 1

2
) + β2(x+ 1

2
)). (13)

Deduction of ϕ̂MN(ω) is now straightforward.
Fig. 4a compares E(ω) and EBL(ω) for the tent filter. The

minimum-error approximation in the space V(β1) is able to repro-
duce the higher frequencies much better. This is quite remarkable
indeed since — if the image were to be resized — the cost of linear
interpolation is much lower than the cost of sinc interpolation. The
comparison between the MN filter and minimum-error approxima-
tion in the space V(β3) (Fig. 4b) shows a similar trend, although the
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Figure 4: E(ω) (solid) vs. EBL(ω) (dashed). (a) The tent filter
with and without a digital processing step. (b) The MN filter as
compared to the minimum-error approximation in the space V(β3).

Figure 5: Test scene rendered with the box filter (421.4 s).

difference in the passband is not as striking as it is in the case of the
tent filter (Fig. 4a). Outside the passband, EBL(ω) is close to unity
which suggests that if fBL(x) is point-sampled, there will be little

aliasing of the spectrum f̂BL. On the other hand, point sampling

fapp(x) will lead to greater aliasing of f̂app.

5 RESULTS AND DISCUSSION

5.1 Synthetic test scene

We have implemented the minimum-error filters presented in Ta-
ble 1 in pbrt-v2 [20]. Fig. 5 shows a test scene rendered using
the box filter. The scene consists of a checkerboard texture that
increases in frequency towards the horizon. A high-frequency pro-
cedural texture is mapped on the surface of the dragon. In addition,
there are two walls in the background that have a grid texture on
them. Due to the presence of sharp edges and high-frequency tex-
tures, this scene serves as a good test for the filters. The material
properties and lighting were adjusted such that the rendered image
has a low dynamic range. This choice allows us to use a simple
linear tone mapping operation to convert the raw rendered image
to an RGB image. We rendered the test scene using our proposed
minimum-error filters as well as the existing filters discussed in Sec-
tion 4.2. Each image was rendered at a resolution of 1000 × 1000



Table 2: Percentage of total energy Etotal that lies in the high-pass
regime ( |k1|, |k2| > 50). The higher the proportion, the greater the
sharpness.

Filter Percentage

Box 16.56
Conv. tent 15.19

Min-error tent 19.18
Mitchell-Netravali 15.50

Min-error cubic 17.41

Min-error tent (AA) 15.97
Min-error cubic (AA) 16.34

so that it can cover the entire width of a column of this paper at 300
DPI. In order to avoid any spurious artifacts due to printing or im-
age resizing, we urge the reader to consult the electronic versions
(provided as supplementary material) of these images as well.

A low-discrepancy sampler [15] — with 256 rays per coefficient
— was used to numerically evaluate the analog acquisition step
(Eq. (9)). Each image took about 7 minutes to render on a 2.3 GHz
Intel R© CoreTM i7 MacBook Pro R© running OS X R© 10.8.2 with 16
GB of RAM. For the digital processing step, we implemented the
convolution operation in the Fourier domain using the fast Fourier
transform (FFT) [12]. This has the advantage that the inverse auto-
correlation sequence a−1

ϕ does not need to be explicitly computed;

a convolution with a−1
ϕ in the spatial domain is equivalent to a di-

vision with the FFT of aϕ in the Fourier domain. This process
implicitly assumes periodic boundary conditions and may give rise
to local artifacts near the boundaries. In order to circumvent this
issue, we simply rendered the images at a slightly higher resolution
and cropped the relevant portion out. The reported timing data is for
the analog acquisition step since the cost of the digital processing
step is negligible in comparison.

Since our proposed minimum-error rendering scheme improves
the reproduction of higher frequencies, we also measured — for
each image — the proportion of the total energy that lies in the
low-pass regime. This is done in the Fourier domain by computing
the FFT of the raw luminance values. The total energy for a square
scalar image is defined as

Etotal(I) :=

N/2−1∑

k1,k2=−N/2

|Îk1,k2
|2, (14)

where Îk1,k2
denotes the FFT of the digital image I that has a total

of N×N pixels (N is even). This measure can be used to ascertain
the overall sharpness of an image. The resulting data for the test
scene is tabulated in Table 2.

Conventional tent vs. minimum-error tent: Fig. 6 com-
pares the conventional tent filter with our minimum-error filter that
projects onto the space V(β1). The conventional tent filter reduces
Moiré patterns that arise due to aliasing. However, it does so by
greatly blurring the image. In comparison, the minimum-error tent
filter faithfully reproduces the edges of the textures. This is further
corroborated by the zoomed insets in Fig. 6 and the luminance dif-
ference image (Fig. 7a). At the same time, due to greater aliasing

of the spectrum f̂app (cf. Fig. 4a), Moiré patterns are also enhanced
when the continuous image fapp is sampled at the pixel locations.

MN vs. minimum-error cubic: Fig. 9 shows a comparison
of the MN filter and the minimum-error filter that orthogonally
projects to the space V(β3). The MN filter restores some of the
high-frequency detail that is smoothed out by the conventional tent
filter. However, the minimum-error cubic filter is visibly sharper,

(a) Conv. tent vs. min.-error tent (b) MN vs. min.-error cubic

Figure 7: Absolute value of luminance difference. A difference of
0.25 or greater is mapped to white.

(a) Minimum-error tent (b) Minimum-error cubic

Figure 8: Removing Moiré patterns. The images were first evalu-
ated on a 2000 × 2000 grid and then downsampled to a resolution
of 1000× 1000.

although the luminance difference (Fig. 7b) is not as striking as the
difference between the conventional tent and the minimum-error
tent (Fig. 7a) filters. Additionally, the minimum-error cubic rendi-
tion (Fig. 9b) is not as sharp as its linear counterpart (Fig. 6b). This
is due the smoothing effect of the non-trivial interpolation filter pϕ.
Moiré patterns are subdued but noticeable.

Removing Moiré patterns: The end result of the minimum-
error image approximation scheme is a continuous image fapp(x)
that can be readily evaluated at any location x according to Eq. (4).
This gives us a straightforward image-space anti-aliasing recipe.
After obtaining the approximation coefficients c[·] in Eq. (7), the
continuous image fapp is first evaluated on a denser grid and subse-
quently downsampled to obtain the digital image at the target reso-
lution. Fig. 8 shows the effect of this anti-aliasing (AA) method ap-
plied to the minimum-error linear and cubic filters. Not only are the
Moiré patterns substantially reduced, the images are also sharper as
compared to the conventional tent and MN filters (cf. Table 2).
The minimum-error cubic filter, owing to its better smoothing and
post-aliasing properties (cf. Fig. 3), has a clear advantage over the
minimum-error tent filter.

5.2 Not-so-synthetic scenes

The test scene scrutinized in the previous section contains patholog-
ically high frequencies that are usually absent in typical rendered
images whose Fourier spectra are largely concentrated around the
origin. For such scenes, the minimum-error linear filter is a good
choice as it provides the greatest sharpness at a modest overhead
as compared to the ubiquitous box filter. Fig. 10 and Fig. 11 show
two example scenes rendered with the conventional and minimum-
error tent filters. The minimum-error filter greatly enhances image
clarity without introducing any undesirable artifacts.



(a) Conventional tent (b) Minimum-error tent

Figure 6: Comparison of the tent filters. The analog step took 438.9 s. The zoomed insets were obtained using bilinear interpolation.

(a) Mitchell-Netravali (467.2 s) (b) Minimum-error cubic (467.4 s)

Figure 9: Comparison of the cubic schemes.

5.3 Limitations

The minimum-error approximation scheme does come with its
share of drawbacks. Particularly, when approximating regions with
sharp transitions (object boundaries etc.), the minimum-error fil-
ters suffer from Gibbs oscillations near the transitions. Fig. 12 il-
lustrates this effect for the minimum-error linear and cubic filters
as compared to the conventional tent and MN filters. In our ex-
periments, we noticed that this effect does not pose any problems

when using linear tone-mapping. However, when using non-linear
tone-mapping for high dynamic range images, the oscillations get
amplified leading to visible ringing artifacts.

The effect of applying the digital filter a−1
ϕ is to restore the high-

frequency content that is smoothed out during the analog acqui-
sition step. If the number of rays used in the analog step is not
sufficient, the resulting high-frequency noise also gets appreciably
enhanced. Hence, complex rendering scenarios such as depth-of-



(a) Conventional tent

(b) Minimum-error tent

Figure 10: Dusk scene rendered at a resolution of 998 × 498 with
128 low-discrepancy samples (rays) per coefficient (312.3 s). No-
tice that the minimum-error image is appreciably sharper.

field and motion-blur require more rays to be cast per coefficient in
order to ensure a noise-free acquisition. One possible way to miti-
gate this problem is to perform an oblique (sub-optimal) projection
onto a chosen space that incorporates a smoothing criterion into the
analog and/or digital steps. This is a topic of future research.

6 CONCLUSION

We have introduced a novel image representation method suitable
for rendering. Our approach is based on the idea of approximating
a rendered image in a shift-invariant space. We have derived the
necessary steps needed to realize the minimum-error approximation
scenario in the context of rendering. Our results demonstrate that
minimum-error approximations — in comparison to state-of-the-art
methods — provide a much better tradeoff between smoothing and
anti-aliasing. When aliasing is a problem that cannot be ignored,
the minimum-error cubic filter is a suitable choice. On the other
hand, for typical rendered images that mimic natural photographs,
the minimum-error tent filter is the appropriate choice.

In future, besides addressing the limitations pointed out in Sec-
tion 5.3, we plan to extend the approach to 3D in order to incor-
porate animated scenes. We also intend to apply it to volume ren-
dering, where we envisage that the partial volume effect [23] can
be further alleviated with the use of minimum-error filters in the
image space. There is also the possibility of using more efficient
spaces based on the hexagonal lattice in 2D [5, 27], and the BCC
and FCC lattices in 3D [11, 14]. Lastly, we are also interested in
exploring the connections between shift-invariant spaces and com-
pressed sensing [9] so as to produce high-quality renderings from a
subset of the measurements [21].

(a) Conventional tent (b) Minimum-error tent

Figure 11: Teapot scene rendered at a resolution of 500× 500 with
16 low-discrepancy samples (rays) per coefficient (31.8 s). Notice
how the bumpiness of the texture and the specular highlights are
exaggerated.
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Figure 12: Luminance profile for various rendering schemes. The
profiles correspond to the red horizontal line segment shown in
Fig. 5.
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