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Abstract
In this work, we present a family of compact, biorthogonal wavelet filter banks that are applicable to the Body Centered Cubic (BCC) lattice.
While the BCC lattice has been shown to have superior approximation properties for volumetric data when compared to the Cartesian
Cubic (CC) lattice, there has been little work in the way of designing wavelet filter banks that respect the geometry of the BCC lattice. Since
wavelets have applications in signal de-noising, compression, and sparse signal reconstruction, these filter banks are an important tool that
addresses some of the scalability concerns presented by the BCC lattice. We use these filters in the context of volumetric data compression
and reconstruction and qualitatively evaluate our results by rendering images of isosurfaces from compressed data.

Categories and Subject Descriptors (according to ACM CCS): I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling—
Splines G.1.2 [Mathematics of Computing]: Approximation—Wavelets
and fractals

1. Introduction

Wavelet bases provide a powerful framework for signal analysis and
allow one to decompose a signal into a sparse representation through
a set of iterated filter banks. In visualization, this transformation affords
many applications such as noise reduction, compression via sub-band
coding, and sparse reconstruction. In one dimension, the analysis of
multichannel filter banks is well understood; this is likely due to the fact
that the analysis boils down to the manipulation of Laurent polynomials
which form a principal ideal domain, so one may use the properties of
unique polynomial division to derive easily parametrizable filter banks.

The multivariate case is considerably more complex. The most simple
extension to multiple dimensions is the separable extension. i.e. extending
univariate techniques via tensor product along the cardinal axes. This
leads to a dyadic scheme that “shaves” off high frequency content along
the cardinal axes. While this is a very natural approach, it treats high
frequencies unequally; it partitions the fundamental region of the lattice
into hyper-cubic subregions. Therefore, regions that are captured about
the diagonal of this hypercube are treated in the same way as regions
that are captured about the cardinal directions.

Of course there is the more general situation in which the wavelet filter
banks are non-separable. In this case, a general sub-sampling matrix is
chosen which affects both the distribution of points which are thrown
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out as a result of the sub-sampling process as well as the dilation of the
resulting point-set back to the original point distribution. Filters must
be then constructed so that certain multivariate reconstruction criteria
are satisfied (e.g. perfect reconstruction or the quadrature mirror filter
criteria). In multiple dimensions, this is difficult due to the lack of a
unique factorization within the multivariate polynomial ring.

When data are sampled according to a non-Cartesian lattice, care
should be taken so as to design filter banks that respect the geometry
of that lattice. For example, one can use any filter bank designed for
n-dimensions on any lattice via a linear transformation, however, this
may distort the fundamental region of the signal in the frequency domain,
resulting in an accompanying distortion of high (and low) frequency
content. For hexagonally sampled data in two dimensions, there exist
a few works that successfully derive filter banks that respect the rotational
symmetry of the hexagonal lattice [CS93,CSW92].

Processing data on a non-Cartesian lattice is not done without good
reason. It is well known that a hexagonal lattice in two dimensions can
represent a function with the same fidelity as a Cartesian lattice with up
to 14% fewer samples. In three dimensions, the optimal lattice is the body
centered cubic (BCC) lattice, which brings a potential 30% saving as
compared to the Cartesian cubic (CC) lattice. Data processing on the BCC
lattice has slowly been studied over the past few years, but surprisingly
there do not exist wavelet constructions that respect the symmetry of
the BCC lattice. This is an important component in data processing since
a sparse representation is key to many data processing applications.

In this work, we consider the dyadic biorthogonal case. Our work can
be seen as an extension to the work of Cohen et al. [CS93] who derived
compactly supported biorthogonal wavelet bases for the 2D hexagonal
lattice. We slightly modify their construction procedure and extend it
to 3D to derive compactly supported biorthogonal wavelet bases that
respect the symmetry of the BCC lattice. In our design methodology,
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Figure 1: The Cartesian (CC) and Body Centered Cubic (BCC) lattice, left and right respectively. Notice the coset structure of the BCC lattice, denoted
by the red and blue node colouring. The support of the linear box spline on the BCC lattice is shown by the green rhombic dodecahedron.

the high-pass filters are first chosen with a specific (and symmetric)
geometry; these high-pass filters lead to a dual low pass filter that
corresponds to the discrete linear box spline [EVDVM08]. We also use
the boot-strapping procedure of Cohen et al. [CS93] to derive higher order
wavelets. Finally, we look at the frequency responses of our wavelets
in the Fourier domain, and compare them to wavelets on the Cartesian
lattice quantitatively and qualitatively in the context of volumetric data
compression (via thresholding) and iso-surface rendering.

The main contribution of this work is therefore the design of a
practical wavelet scheme for volumetric data that is sampled on the
BCC lattice. While other works have peripherally touched upon this
topic, an explicit construction scheme on the BCC lattice has so far
remained elusive. Even though our construction is based on the work
of Cohen et al. [CS93], the extension to BCC is non-trivial. In particular,
it is not obvious how to choose starting filters so that the low pass filter
yields a box spline. We show that a particular family of high pass filters
aligned in the Voronoi relevant directions of the BCC lattice — akin to
the D3bQ15 discretization of the velocity space in the lattice Boltzmann
method [AEM09] — does in fact lead to a low pass filter that corresponds
to the linear box spline. Our presentation is self-contained and reviews
the necessary mathematical background behind dyadic non-Cartesian
multiresolution analysis so as to stimulate further research on this topic.
For the benefit of the practitioner, we also provide the filter weights
corresponding to the linear and quintic box spline wavelet bases.

2. Background

2.1. Related Work

Within the context of scientific visualization, the BCC lattice has been
subject to much exploration from researchers and has found applications
in problems ranging from computed tomography [FAVM09] and fluid
simulation [AEM09] to surface reconstruction [HK15] and frameless
volume visualization [PK16]. A significant body of literature related to
the BCC lattice has focused on the representation and reconstruction
of data. Reconstruction is a non-trivial problem because, when working
with data on the BCC lattice, it is no longer possible to use the ubiquitous
tensor product B-splines to reconstruct data between sample values.
However, various reconstruction filters have been designed to work on the

BCC lattice, often with smaller support than their Cartesian counterparts.
For example, the linear and quintic box splines of Entezari et al. have
generally smaller support than the tensor product linear and cubic
B-splines on the Cartesian lattice [EDM04,EVDVM08]. Kim presented
a quartic box spline with even smaller support but the same smoothness
as the quintic box spline, as well as a tensor product style box spline
(with larger support but reasonable evaluation speed due to the structure
of the spline) [Kim13]. There are also DC-splines [DC10,Csé13,AO15],
which attempt to bring the advantages of tri-linear interpolation to the
BCC lattice; we suspect these are not a new family of splines, but rather
a sub-family of the exponential box splines [Ron88].

It is often necessary to apply discrete filters to continuous data that
are represented in a discrete fashion via lattice samples. Towards this
end, the discrete filters should be carefully designed so as to match the ap-
proximation capabilities of the continuous reconstruction filter. Alim et al.
designed discrete derivative filters for the BCC lattice [AMC10,HAM11],
and proposed a fast discrete Fourier transform for BCC data [AM09]. In
terms of multiresolution approaches on the BCC lattice, there is not much
work. Alim et al. proposed a Cartesian to BCC downsampling strategy
that preserves the quality of the fine level at the coarse level [AO15]. There
is also the hierarchical scheme of Entezari et al. which downsamples data
from an original Cartesian lattice to a face centered cubic (FCC) lattice
(two-fold reduction), a BCC lattice (four-fold reduction), and a coarse
Cartesian lattice (eight-fold reduction) [EMBM06]. However, the paper
really only tells half of the bigger picture; it low-passes data, but there are
no corresponding high-pass filters. Operations such as compression and
noise reduction are therefore out of reach of this technique. Some work,
however, has gone into finding dilation matrices for non-dyadic wavelet
transforms on the BCC lattice [EMV04], but these have yet to yield any
filter banks that we know of. This is likely because it is difficult to design
filter-banks with more than two channels. Kovacevic et al. provide an
in-depth and general characterization of the relationship between the dual
and primal filters in non-separable filter-bank design [KV92]. However,
their methodology is difficult to apply to our case since we desire that
symmetry be the constraining factor.

Interestingly, the primal low pass filters derived from our construction
leads to a familiar class of box spline wavelets. Box splines naturally
appear in the study of multivariate refinable (i.e. wavelet-like) functions,
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likely due to their self similarity [DBHR13,MMZ11b]. Box splines have
also been studied in connection with dyadic wavelet schemes. He et al.
provided a factorization of box spline filters into corresponding high-pass
filters and characterized a family of duals for the box spline low pass
filter [HL03]. While that work gives an explicit form for a (dyadic)
dual of a small class of box splines, the factorization of high-pass filters
leads to a design that is not appropriate in practice; the resulting high-
pass filters are asymmetric and have seemingly random geometry. More
troubling is that their parametrization of the dual low pass filter banks
appear to lack the same symmetry as the primal low pass filter. Ye et al.
proposed a geometric Fourier domain approach to design bivariate wavelet
filters [YE12]. While their approach can be extended to BCC, the resulting
filters would have infinite support and would need to be applied in the
Fourier domain. We prefer the finite support of our design, as this allows
us to apply our filters without first transforming the whole input dataset.

Another important aspect of filter design is convergence; if a filter bank
does not converge to an appropriate function, it may have practical ramifi-
cations on the bound of the coefficients of the resulting decomposition. In
the general setting with some dilation matrix D, convergence and smooth-
ness of refinable (wavelet-like) functions have been characterized by Jia
et al. [Jia99,JJL02]. The more general case of non-linear (data-dependent)
refinable functions has also been characterized [MMZ11a,MMZ11b].

2.2. Data Sampled on the BCC Lattice

For volumetric visualization of scalar data, we have a function f :R3→R
that we wish to extract information from, perhaps an iso-surface or an
image via ray-marching. Often these data are discrete samples located
on a Cartesian grid. That is, each sample lies in space at some triple in the
set Z3. Data between these points are then interpolated to approximate
the underlying function f (x).

While this method is simple, it is suboptimal. A more robust approach
allows us to incorporate different sampling patterns, thus an invertible ma-
trix L is introduced, which is often known as the generating matrix for the
sampling lattice. A function is now sampled according to the set LZ3. The
optimal sampling lattice in R3, the BCC lattice, is generated by the matrix

L=

−1 1 1
1 −1 1
1 1 −1

.

This is depicted in Figure 1, alongside the CC lattice. The data we
concern ourselves with in this work are the samples of some signal s(x)
at the lattice sites of the BCC lattice. That is, we work with the sequence

s[n] :=s(Ln) such that n∈Z3. (1)

It is important to stop and note that this matrix is different than our
dilation matrix. In our scheme, L defines the locations of the samples
in space, whereas our dyadic dilation matrix is 2I.

2.3. Multiresolution Analysis in L2(R)

At the heart of any wavelet decomposition scheme is the concept of a
multiresolution analysis (MRA). A MRA focuses on the representation
of a signal at different scales and the associated wavelet filter banks
are the tools that allow one to shift between scales. Formally, a dyadic
multiresolution analysis over R consists of the sequence of function
spaces {···V−1,V0,V1 ···}. These function spaces are spanned by the

dyadic translates and scales of a scaling function ϕ :R→R. That is, Vj
consists of all functions

Vj :=

{
∑
i∈Z

ci jϕ(2
− jx−i)

}
(2)

where ci j is a coefficient associated to each translated and scaled basis
function. A MRA satisfies the following properties:

{0}←···V2⊂V1⊂V0⊂V−1⊂V−2⊂···→L2(R), (3)

f (x)∈Vj⇐⇒ f (2x)∈Vj−1⇐⇒ f (2 jx)∈V0, and (4)

{ϕ(x−k)} is an orthonormal basis for V0. (5)

We adopt the convention of Cohen et al. [CS93] and denote the
low-pass and high-pass filters as m0 and m1 respectively. In the
orthogonal two-channel case, the Fourier transforms of the filters are
related by m̂1=e−ıωm̂0(ω+π) (where we use ı to denote the complex
unit), and must satisfy

m̂0(0)=1 and |m̂0(ω)|2+|m̂0(ω+π)|2=1. (6)

The first condition is necessary for the filter to converge to a wavelet
scaling function, while the second (known as the conjugate quadrature
filter criterion) ensures that the filter bank achieves perfect reconstruction.
The scaling function is then defined via the infinite product

ϕ̂(ω)=
∞
∏
j=1

m̂0(2
− j

ω) (7)

which comes about as the consequence of the two scale relationship
between the function spaces Vj. If these products converge point-wise
to a function in L2(R), then we have a MRA. The wavelet function can
also be expressed as

ψ̂(ω)=m̂1

(
ω

2

)
ϕ̂

(
ω

2

)
, (8)

or equivalently in the spatial domain as

ψ(x/2)=∑
i

m1[i]ϕ(x−i). (9)

Biorthogonal wavelets provide a more general framework that allows
a higher degree of freedom when designing filter banks. In this paradigm,
we now have a pair of dual low-pass filters m0 and m̃0 which must satisfy

m̂0(0)= ˆ̃m0(0)=1, m̂0(π)= ˆ̃m0(π)=0 and (10)

m̂0(ω) ˆ̃m0(ω)+m̂0(ω+π) ˆ̃m0(ω+π)=1. (11)

The latter equation is the Fourier domain representation of the dyadic
biorthogonality constraint

(m̄0∗m̃0)[2i]=δ[i], (12)

where m̄0[i] := m0[−i] and δ[·] denotes the Kronecker delta sequence.
The high-pass filters that achieve perfect reconstruction are given by

m̂1(ω)=e−ıω ˆ̃m0(ω+π) and ˆ̃m1(ω)=e−ıωm̂0(ω+π). (13)

The pair of low-pass filters have the associated scaling functions

ϕ̂(ω)=
∞
∏
j=1

m̂0(2
− j

ω) and ˆ̃ϕ(ω)=
∞
∏
j=1

ˆ̃m0(2
− j

ω) (14)

and the wavelet functions are

ψ̂(ω)=m1

(
ω

2

)
ϕ̂

(
ω

2

)
and ˆ̃ψ(ω)= ˆ̃m1

(
ω

2

)
ˆ̃ϕ
(

ω

2

)
. (15)
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2.4. Box Splines

Box splines are multivariate piecewise polynomial functions that are
analogous to the univariate B-splines [DBHR13]. They can be obtained
by successively convolving a box function along different direction
vectors. In particular, we are interested in the linear box spline [EDM04]
that is analogous to the Courant element in two dimensions; it very
naturally reflects the geometry of the BCC lattice (Figure 1). While the
linear box spline has a simple piecewise polynomial representation, the
Fourier domain representation is even more simple,

c(ωωω) :=
(

1−eıω0

ıω0

)(
1−eıω1

ıω1

)(
1−eıω2

ıω2

)(
1−e−ı(ω0+ω1+ω2)

−ı(ω0+ω1+ω2)

)
.

(16)

It is also well known that the linear box spline can be obtained from
iterating the discrete filter

C(z) :=
(

1+z0
2

)(
1+z1

2

)(
1+z2

2

)(
1+z−1

0 z−1
1 z−1

2
2

)
(17)

about the two-scale relationship [DBHR13]. The linear box spline
can be convolved with itself to yield the higher-order quintic box
spline [EDM04].

3. Wavelets on the BCC Lattice

3.1. Dyadic Biorthogonal Filterbanks on the BCC Lattice

Moving away from the single variable case, we consider filters located
at BCC lattice sites. A dyadic scheme in three variables corresponds to
an 8-channel filter bank; in general this is related to the coset vectors
of the dilation matrix, which is also related to the determinant of the
dilation matrix [KV92]. For a dyadic scheme in three dimensions, we
have the dialation matrix 2I with det2I = 8. Thus, we introduce the 8
filters m0,...,m7 and their duals m̃0,...,m̃7. Our goal is to construct a
family of these filter banks that respect the geometry of the BCC lattice
and achieve perfect reconstruction.

We cement the notation that the discrete filter m[n] has the discrete
Fourier transform and Z-transform

m̂(ωωω)= ∑
n∈Z3

m[n]e−ıωωωT Ln and M(z)= ∑
n∈Z3

m[n]z−n (18)

respectively. Note that the Fourier form can be obtained from the
Z-transform via

m̂(ωωω)=M(eıωωωT L). (19)

Recall that m̂(ωωω) is a periodic function with respect to the dual
face-centered cubic (FCC) lattice that is generated by the matrix L−T .

We use the notation m̊[n] to denote the spatially flipped version of m, i.e.
m̊[n]=m[−n]. We also use the notation a to denote the complex conjugate
of a. Note that ̂̊m(ωωω)=m̂(ωωω). We also define the aliasing vectors πππ0 :=
(0,0,0)T , πππ1 :=(0,0,π)T , πππ2 :=(0,π,0)T , πππ3 :=(0,π,π)T , πππ4 :=(π,0,0)T ,
πππ5 :=(π,0,π)T , πππ6 :=(π,π,0)T and πππ7 :=(π,π,π)T . Observe that for a
dyadically downsampled sequence x[n] :=m[2n], we have

x̂(ωωω)=
1
8

7

∑
i=0

m̂(
ωωω

2
+L−T

πππi) and X(z)= 1
8

7

∑
i=0

M(
√

zeıπππi), (20)

and for an up-sampled sequence y[n] := {m[n/2] if n is all even, and
0 otherwise}, we have

ŷ(ωωω)=m̂(2ωωω) and Y(z)=M(z2). (21)

3.2. Perfect Reconstruction

At a high level, the perfect reconstruction sub-band encoding scheme
guarantees that, after a signal has been broken down into its low and high
pass frequencies it can be re-assembled without introducing any aliasing.
This is shown diagrammatically in Figure 2; the equivalent Fourier and
Z-transform representations are

ŝ′(ωωω)=∑
j
∑

i
ŝ(ωωω+L−T

πππi)m̂ j(ωωω+L−T πππi) ˆ̃m j(ωωω), (22)

and

S′(z)=∑
j
∑

i
S(zeıπππi)M j(z−1e−ıπππi)M̃ j(z). (23)

respectively. Since it is easier to work with polynomial matrix equations
in computer algebra systems, we mainly adhere to the Z-domain
interpretation from this point on. Using Equation (23), it is easily seen
that the sub-band coding scheme pictured in Figure 2 will achieve perfect
reconstruction if it satisfies the following equations:

∑
j

M j(z−1e−ıπππi)M̃ j(z)=δ[i], for i∈{0,...,7}. (24)

To compact notation, we define the following matrix and col-
umn vector. Let AAA(z) be the matrix with the entries defined by
ai, j(z) :=M j(z−1e−ıπππi), and let bbb(z) be the column vector with entries
b j :=M̃ j(z). With this notation, we can write the perfect reconstruction
criteron (Equation 24) as

AAA(z)bbb(z)=(1,0,0,0,0,0,0,0)T . (25)

Since AAA(z) is a finite matrix with finite Laurent polynomials, if we know
a suitable set of primal filters, we can find the dual filters by inverting
AAA(z) and finding bbb(z). However, we still lack a starting point for AAA(z).
The next proposition gives a way of peeking into a solution given a
“reasonable” set of starting dual high pass filters.

Proposition 3.1 If the set of filters m0, ... ,m7,m̃0, ... ,m̃7 has perfect
reconstruction, then

M̃0(z)=kznAAA0,0(z) (26)

where AAA0,0(z) is the matrix minor associated with M̃0(z), k 6=0, n∈Z3,
and

7

∑
i=0

M0(z
−1e−ıπππi)M̃0(zeiπππ j)=1. (27)

Proof Equation 26 can be derived by using Cramer’s rule to solve for
the first component of bbb(z), i.e. the dual low-pass filter M̃0(z), and using
the fact that det(AAA(z)) is at most a monomial. Equation 27 comes from
expanding det(AAA(z)) using cofactor expansion along the rows of AAA(z)
and substituting Equation 26 into the resulting expression.

We remark that Equation 27 is the higher dimensional analog of the
dyadic biorthogonality constraint expressed in Equation (11). Similar
relationships can be derived for the high-pass filters and their duals.

Thus, if we have a set of primal high pass filters, we can determine the
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s[n] ∗

m̊0[n]

m̊1[n]

m̊2[n]

m̊3[n]

m̊4[n]

m̊5[n]

m̊6[n]

m̊7[n]

↓8

↓8

↓8

↓8

↓8

↓8

↓8

↓8

LP

HP 1

HP 2

HP 3

HP 4

HP 5

HP 6

HP 7

↑8

↑8

↑8

↑8

↑8

↑8

↑8

↑8

∗

∗

∗

∗

∗

∗

∗

∗

m̃0[n]

m̃1[n]

m̃2[n]

m̃3[n]

m̃4[n]

m̃5[n]

m̃6[n]

m̃7[n]

+ s′[n]

Figure 2: An 8-channel sub-band coding scheme. Here ∗ denotes convolution, ↓8 and ↑8 denote dyadic down and up sampling respectively. At the
end of the reconstruction, the signal must be scaled by 8.

dual low pass filter, and as a result, the primal low pass filter. Our strategy
will be to choose a set of reasonable high pass filters that yield a low pass
filter that corresponds to the linear box spline scaling functions. We then
derive a dual low pass filter, and complete the system of equations 25.

4. Construction

As previously stated, our wavelet scheme has more than two channels, and
the relationship between high and low pass filters is no longer as simple as
it is in the dyadic univariate case. While it is not necessary to know the high
pass filters a priori, attempting to design the high pass filters from just the
constraint that the associated low pass be the linear box spline leads to high
pass filters that are unacceptable for volumetric data processing [HL03].
We choose to follow a construction similar to the work of Cohen et
al. [CS93]. The salient steps of our construction scheme are as follows.

1. Choose the primal high pass filters with appropriate geometry for the
BCC lattice.

2. Use Equation (26) to derive the dual low pass filter, with our choice
of high pass filters this generates a shifted version of C(z).

3. To enforce the zero-phase condition, shift the primal low pass filter
to the origin, and normalize the filter so that ˆ̃m0(000)=1.

4. Find the primal low pass filter m0, and swap the family of filters so
that the dual filters are now the primal filters, and the primal filters
are now the dual filters.

5. Solve the system of equations (25) to derive the now dual high pass
filters.

A few notes about each step are in order. The choice of filters for step 1.
need not be chosen with any particular geometry (see [HL03] as an
example), however, we choose them to be a particular filter oriented along
principal lattice directions, and the cardinal directions. This has shown
to be a rather practical starting point in two dimensions on the hexagonal
lattice [CS93], and should roughly partition the frequency domain more
isotropically as compared to the tensor product Cartesian filter banks.

Filter Polynomial

m1[n] − 1
2z1z2

+ 1
4z2

1z2
2
+ 1

4

m2[n] − 1
2z0z2

+ 1
4z2

0z2
2
+ 1

4

m3[n] − 1
2z0z1

+ 1
4z2

0z2
1
+ 1

4

m4[n] − 1
4z0

+ 1
8z2

0
+ 1

8

m5[n] − 1
4z1

+ 1
8z2

1
+ 1

8

m6[n] − 1
4z2

+ 1
8z2

2
+ 1

8

m7[n] 1
8z2

0z2
1z2

2− 1
4z0z1z2+

1
8

Table 1: The Z-domain polynomials of all filters given in Figure 3. The
first three filters correspond to the filters along the cardinal axes, and
the last four correspond to the filters about the diagonal axes.

The shift in step 3. is also not completely necessary, but the zero-phase
condition is useful for (volumetric) image processing, as it ensures that
fundamental region of the signal is preserved by the low pass filter,
and reduces distortion. The duals in step 4. always exist [CS93], and
can possibly be derived explicitly, although we choose an algorithmic
procedure to derive the dual low pass filters. The swap in step (4.) is valid
due to the commutativity of convolution.

4.1. Choice of High Pass Filters

Here we present one choice of high pass filters that generates the linear
box spline as a low pass filter. This is simply stated in the following
proposition.

Proposition 4.1 The filters family of filters m1 ···m7 listed in Table 1
(and partially depicted in Figure 3) generate the linear box spline.
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1
4

−1
2

1
8

−1
4

Figure 3: Filter weights for the starting high pass filters. There are two families of filters we start with. m1 is depicted in the left sub-figure; it is a
simple 1D filter extended along the golden vector. The other two vectors in that image denote the directions along which we extend the same filter
to obtain m2 and m3. Similarly, the rest of the starting high pass filters are given on the right; they are extended along 4 diagonal directions. This
gives a total of 7 high-pass channels. Notice how this reflects the symmetries of the BCC lattice; we further remark that the configuration thus obtained
is similar to the D3bQ15 discretization of the lattice-Boltzmann method [AEM09].

Proof Complete the system of equations given by 26, then shift the
solution to the origin.

There are other possible choices for these filters. In fact, it is possible
to scale them so that they are all the exact same filter extended along
each chosen direction, but doing so introduces a seventh square root in
each filter coefficient. With the proposed filter weighting scheme, every
coefficient’s denominator is a power of two, which is computationally
more elegant than a seventh root. We could also use different order filters
as a starting point for the high pass filters. The chosen high pass filters are
a particularly nice starting point though, since it is possible to boot-strap
higher regularity wavelets without introducing additional conditions on
the starting high pass filters.

4.2. Computing the Dual Low Pass Filters

Once the high pass filters are known to converge to the linear box spline,
we require a dual low pass filter to complete the dual family of filters.
For a given low pass filter, there are infinitely many possible dual filters,
a family of such has been characterized explicitly by He et al. [HL03],
however we take a different approach.

We solve for duals algorithmically, similar to the work of Ji et
al. [JRS99]. We define a mask M̃0 including the kth and lower rings
of points on the BCC lattice and imbue this with octahedral symmetry.
We then substitute this mask into the duality equation and solve the
linear system of equations that comes about from matching coefficients.
This is implemented with exact arithmetic within Sage [The16], and our
coefficients are therefore exact.

4.3. Boot-strapping Higher Regularity Filters

The linear case, for certain applications, may provide insufficient regular-
ity; some applications demand at least second order smoothness. We may
thus use the boot-strapping procedure of Cohen et al. to design higher
regularity wavelets [CS93]. As a note, it may be possible to derive a condi-
tion on the initial dual high pass dual filters that guarantee a certain order

of regularity of the resulting wavelet bases, but the proposed boot-strap
procedure provides a simple scheme that needs no additional theoretical
framework to achieve the desired construction, we review it now.

Let m̃′1,...,m̃′7 be the family that generates M0=C(z) as a primal low
pass filter, and let p and q be positive integers.

1. Find the smallest degree dual to Cq+1(z) using the procedure above,
call this dual D(z); we thus have m′=cqd is dual to m̃′

2. Find the primal high pass filters by solving the system of equations (25)
3. Define m j = m̃′j, and note that m̃0 = m′0. Find the dual D(z) to

C(z)p+q, then set m0=dcp and note that it is dual to m̃0
4. Solve (25) to obtain the unknown filters m̃ j

4.4. Convergence of Scaling Function Bases

When the dual high-pass filters generate a box spline as the primal low
pass filter, then it is well known that the primal scaling function will
converge to the continuous box spline. However, depending on the choice
of dual, convergence of the dual scaling function is not assured. It is
reasonably easy to use the work of Jia et al. to show that our dual filter
converges to an L2 integrable function for certain p and q, although this
is not true for all p and q [JJL02]. Convergence is important in practice
as it establishes a bound on the coefficients of the wavelet decomposition.

5. Experiments

To evaluate the applicability of our filter banks, we perform wavelet thresh-
olding on multiple datasets; namely the Carp, Stent, and Head datasets
(shown in Figure 4). We also conducted tests on the Marschner-Lobb (ML)
test function [ML94]. We sub-sampled these datasets on a 101×101×
202 BCC grid, using a cubic tensor product I-MOM to reconstruct the new
sample values [BTU01]. We then preformed a seven level hierarchical
wavelet decomposition – at each level, the low pass channel of the high
level is decomposed into its seven details and one coarse level. We exam-
ined the non-zero detail coefficients, sorted them, and removed those be-
low a given threshold so that a certain user-defined percent of the non-zero
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Figure 4: A medley of the original high-resolution datasets. The Stent
data set is depicted in gray (original resolution: 512 × 512 × 174,
iso-value: 206), Head in yellow (original resolution: 256×256×256,
iso-value: 127.5) Carp in blue (original resolution: 256×256×512,
iso-value: 1435.5), and finally the Marschner-Lobb test function in red
(iso-value: 0.5)

detail coefficients become zero. We then reconstructed the signal and mea-
sured the PSNR, defined as 10log(max2

I /mse) where mse is the integral∫
( f (xxx)−g(xxx))2dxxx between the approximate reconstruction with fewer de-

tail coefficients g(xxx) and the original high resolution reconstruction f (xxx),
and maxI is the maximum possible intensity value for a dataset. We accom-
plished this via Monte Carlo integration over the volume with 108 samples.

As a comparison with wavelets on the Cartesian lattice, we also sub-
sampled these datasets in the same way onto a 128×128×128 Cartesian
lattice, then applied a linear spline wavelet to remove coefficients below
a given threshold. The CDF family [CDF92] of wavelets was used as
its filters coincide with the starting scaling filters used in our construction
procedure. In particular we choose N=2 and Ñ=2.

To assess how increasing the order of wavelet scheme affects a
reconstruction on the BCC lattice, we performed the bootstrapping
procedure with p=2 and q=1. In the limit, this gives the quintic box
spline as a scaling function on the BCC lattice. We then collected the L2

error, and compared it with the linear case. We also qualitatively assess
the differences in our reconstructions by rendering iso-surfaces of our
reconstructed datasets. All reconstructions on the low resolution CC
lattice use the tensor product linear spline, whereas reconstructions on
the BCC use the linear and quintic box splines.

6. Results

6.1. Frequency Responses

It is worth investigating how our filter banks behave in the Fourier domain.
Figure 5 show the frequency response of the linear box spline wavelet
filter banks. Note that, on the dual side, the high pass filters are quite
simple – this is paralleled by the low pass primal (the box spline) which
is also quite simple. Respectively, they have a support size of 3 (each
high pass has 3) and 15 lattice sites. The dual low pass has a support of
65 lattice sites, and the primal high pass filters have a support of 77 lattice
sites. For p=2, q=1 the dual low pass filter has 671, whereas the primal
low pass has 65. The dual high pass has 77, and the primal has 1493.

6.2. Comparison

Figure 6 shows the quantitative results as we add more coefficients. We
start with 95% of the coefficients and add coefficients in increments of
5%. When less data are used, the CC lattice seems to outperform the BCC
lattice, however, as we increase the amount of data that are kept, the BCC
lattice overtakes the CC lattice. In a sense this is somewhat analogous to
sampling rate of the function, in the under-sampled region, the CC lattice
outperforms the BCC lattice. The situation is reversed in the oversampled
region. This is consistent with other comparisons between the BCC and
CC lattices since the argument for optimality is in the limit [VCRG14].

We now discuss the qualitative aspects of the reconstructions in
Figure 8 and Figure 9. The ML function is interesting since it is
oversampled and most of its frequency content is captured very well
in the low pass region of the original sampling. It then makes sense
that the reconstruction fidelity changes very little as we remove small
non-zero detail coefficients. But as we pass the critical frequency range
into under-sampling, the CC lattice overtakes the BCC lattice. This is
fairly consistent in the other datasets as well.

For the Head and Stent datasets, there is severe artifacting when using
only 5% of the data. Between 15% and 25% there is minor artifacting
around the lips and nose on the Head dataset. On the Stent dataset, we can
easily see the effect of crossing the critical frequency point. At 5% the CC
reconstruction better resembles the original 100% CC reconstruction more
than the 5% BCC resembles the 100% BCC reconstruction. However, as
we cross that range, the BCC lattice outperforms the CC lattice. Finally,
the Carp dataset surprisingly does not lose too much fidelity as we
remove more data — with only 5% details the reconstruction is quite
faithful to the 100%. One would expect the fine details of the ribs to be
lost as the threshold increases.

Moreover, we found that if we increased the order of the family of box
spline wavelet we could garner a slight improvement over the linear box
spline. This is apparent in the ML PNSR plot, but is not present in the other
plots. This is likely due to the fact that the subsampling process band-limits
the underlying representation, it is therefore difficult to take advantage of
a higher order filter, as there is no additional higher frequencies to capture.
Qualitatively, to show the different artifacting caused by the filters, we
discarded 95% of the data and looked at the reconstructions (Figure 7).
The artifacts are notably more smooth when using the BCC 2,1 filter. We
must say though, increasing the order of the filter bank increases filter
size, and there is no guarantee that the increased support will necessarily
lead to a more sparse representation, and better compression.
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Figure 5: From left to right we have the frequency responses of low pass primal, low pass dual, high pass primal and high pass dual respectively. Note that
these are periodized about an FCC lattice, so the fundamental region is replicated in a rhombic dodecahedral pattern. The red indicates the frequencies
that will be passed by the filter, whereas blue indicates the frequencies that will be muted. Only one high pass filter is shown here, the rest are symmetric.
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Figure 6: Approximate PNSR for various reconstructions. As the percentage grows, more data are kept, thus the approximation becomes better. Here,
higher values on the y-axis indicate a better approximation.

7. Conclusion

Since we feel that this is an important tool for those wishing to process
data on the BCC lattice, the code to derive these filter banks can be found
on GitHub [Hor17]. However, it can be quite computationally expensive
to derive these filter banks, so we also provide the filter values, and the
boot strapped filter values for p=2, q=1 and p=1, q=2.

In the future, we would like to explore more elaborate compression
schemes on the BCC lattice, in particular exploring blocking schemes,
and performing sparse sub-band encoding on those decomposed blocks.
Besides the basic interest in compression, it is an interesting question
as to what space filling curve is appropriate to use in the necessary run
length encoding portion of such schemes. We are also interested in actual
wavelet scaling functions as they are the basis for the Wavelet surface
reconstruction scheme [MPS08].

We presented a method of constructing a new family of non-separable
wavelet filter banks. In particular these filter-banks respect the geometry
of the BCC lattice, and evenly distribute the high pass detail coefficients
among the high pass channels. We then evaluated these filter banks within
the context of compression via thresholding and visualized the results.
We were able to throw away much of the data while maintaining visual
fidelity and reasonable error.
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Figure 7: Comparisons with other wavelet thresholding schemes. For the region indicated in each dataset, we show a reconstruction with 95% of
the detail coefficients removed. On the left is the tensor product CC wavelet family, the center BCC linear box spline wavelet, and the right is the BCC
2,1 wavelet. We removed most of the detail coefficients to amplify the appearance of compression artifacts.

Figure 8: Reconstructions of the synthetic Marschner Lobb function at 5%, 15%, 25% and 100% of detail coefficients, left to right, respectively. The
top row are the reconstructions on the BCC lattice, where the bottom row are reconstructions on the CC lattice.
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Figure 9: Reconstructions of the test data with 5%, 15%, 25% and 100% of the detail coefficients, left to right, respectively. Within each pair of rows,
the top row are the reconstructions on the BCC lattice, whereas the bottom are the reconstructions on the CC lattice.
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