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Abstract
In this paper, we present a novel illustrative multivariate visualization for geological modelling to assist geologists and reservoir
engineers in visualizing multivariate datasets in superimposed representations, in contrast to the single-attribute visualizations
supported by commercial software. Our approach extends the use of decals from a single surface to 3D irregular grids, using
the layering concept in order to represent multiple attributes. We also build upon prior work to augment the design and im-
plementation of different geological attributes (namely, rock type, porosity, and permeability). More specifically, we propose
a new sampling strategy to generate decals for porosity on the deformed grid; a hybrid visualization for permeability, which
combines 2D decals and 3D ellipsoid glyphs; and a perceptually-based design that allows for visualizing additional attributes
(e.g., oil saturation), while avoiding visual interference between layers. Furthermore, our visual design draws from traditional
geological illustrations, facilitating the understanding and communication between interdisciplinary teams. An evaluation by
domain experts highlights the potential of our approach for geological modelling and interpretation in this complex domain.

In this additional material, we present an overview of workflows,
task analyses and challenges in the oil and gas domain. This char-
acterization comes from our long-term collaboration with domain
experts, literature review as well as previous studies conducted in
this domain, and aims at informing visualization practitioners new
to this domain.

For our characterization, we use the multi-level typology frame-
work [BM13]. This typology allows “the translation of empirically
observable domain problems into abstract tasks and subsequently
into design choices” [BM13]. For a given task, we first identify
why the task is performed, and then how the task will be supported.
What connects these two stages and refers to the input and out-
put (if applicable) of a task. For more details we refer the reader
to [BM13,Mun14]. We use the labels black and purple bold to re-
fer to action and targets under the why category, whereas green
bold refers to the how category (in the paper).

1 Domain Problem Characterization

In the domain of oil and gas, the process of exploration, develop-
ment and production (E, D&P) consists of complex tasks and work-
flows that require the processing of large volumes of data coming
from multidisciplinary sources [SBS15] (Figure 1). The ultimate
goal is to obtain optimal recovery from the subsurface pools of
hydrocarbons encompassed by rock formations. For this purpose,
several data processing and analysis tasks are conducted by multi-
disciplinary teams to create a reliable version of the target geologi-
cal reservoir. In the next subsections, we provide details on some of
the challenges faced during the modelling and exploration of these
datasets.

1.1 Exploration Stage

The main part of the understanding of the geological reser-
voir happens during the exploration stage. In this stage, geophysi-
cists and geologists aim to discover potential areas of exploration
from a set of seismic images from the field — classified as pre-
stack (raw data) or post-stack (post-processed data) — produced
by the process of seismic echography. They aim to discover ge-
ological scenarios and potential reservoirs for exploration called
prospects [WKC14]. To achieve this goal, exploration wells are
drilled and physical and digital data such as rock core (pieces of
rock) and well log (physical measurements made by instruments
lowered into the hole that capture certain frequencies (logs) refer-
ring to specific lithologies (rock types)) are collected from the well-
bore. This process is known as coring [GA11].

1.2 Development Stage

After the reserves are confirmed, the goal now is to generate a
3D geological representation of the underground reservoir. For this
purpose, seismic images are used (generally post-stack images, af-
ter the noise and over corrections are made) as a basis to generate
the topological part of the reservoir (gridding process). Each layer
of the reservoir is derived from a series of geological interpre-
tations on the seismic images conducted by geologists – e.g., by
sketching horizon lines and faults [PGT∗08]. Due to noise and lack
of precision from the seismology acquisition, the process of defin-
ing the layering of the subsurfaces of the field, named horizons, re-
lies on the expertise of geologists and their ability to conceptualize
geological scenarios [LNP∗13]. This process is known as seismic
interpretation [NLP∗13].
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Figure 1: Multidisciplinary disciplines and tasks throughout the
exploration, development and production stages [SBS15].

1.2.1 Geological Modelling

After the structural grid is created, the next step is to discover
the overall geological trends of the underground reservoir. Since
reservoir models are generally built to be input to flow simulators
that are used by reservoir engineers in order to verify flow be-
havior, in order to achieve success, these models have to capture
the essential heterogeneity of properties (trends) that will impact
reservoir simulation performance. Because the information from
small scales (e.g., coring data and lab measurements) are interpo-
lated/extrapolated to several meters following some geostatistical
model [GA11], the amount of uncertainty that is inserted makes this
task highly difficult. Moreover, if these static models fail to model
the reservoir heterogeneity, the simulation forecasts conducted by
the reservoir engineers can be useless. For this reason, geologists
and geophysicists explore the distribution of these properties
(within the reservoir model) to verify if the property modelling
is appropriate or if it has features (outliers) that were introduced
which are contrary to the knowledge of the well data (e.g., core
data, well log). During these studies, they explore and compare
geological attributes to identify correlations between proper-
ties and geological or petrophysical trends [RB15]. This task is
even more challenging since attributes have different data types
(e.g., scalar, tensor) and semantics.

To model geological attributes, geologists begin with the goal
of generating the attribute facies, which are distinct sedimen-
tary areas that correspond to rock types. In the literature, there
are several methods available aiming to generate a good ini-
tial distribution of facies along the reservoir from the sampled
data. These methods are typically based on geostatistical models
such as sequential-indicator simulation [JH03], object-based mod-
elling (OBM) [HD∗90], truncated Gaussian simulation (TGSIM)
[MA94], or multiple point statistics (MPS) [Str02]. After facies
are defined, unique property values are assigned in each grid cell
describing its geology (geological attributes) such as rock type,
permeability and porosity (where these depend on facies). The
property distribution typically uses interpolation or a combina-
tion of geostatistical methods such as kriging [OW90], sequential-

Gaussian simulation (SGS) [DJ98], or multiple-point statistics
(MPS), within each of the facies previously modelled. After the
geological attributes are populated, the three-dimensional model
is now known as a fine-scale (high resolution) geological or static
reservoir model.

1.2.2 Static Uncertainty and Quality Control

In the previous scenarios, the process of creating a reliable ge-
ological model involves a lot of uncertainty and depends on sta-
tistical models and methods for extrapolating/interpolation infor-
mation. Indeed, uncertainty exists in all stages: in raw data mea-
surements, raw data processing and interpretation, structural mod-
elling, stratigraphic modelling, facies modelling, property mod-
elling, among others. These methods cannot guarantee that the at-
tributes’ heterogeneity match the underneath reservoir.

The uncertainty involved in this domain negatively affects the
ability to fully understand the reservoir behavior thereby affect-
ing reliable production forecasts and drilling planning in the next
stages. To reduce uncertainty during geological modelling, a com-
mon approach is to generate several alternative models, which are
called geological realizations. In this process, geostatistical tech-
niques are used to model uncertainty through stochastic simula-
tions [MM99]. This method generates equally-probable spatial
distributions of properties, called realizations. After this process,
the problem of data interpretation and understanding scales from
one to hundreds of geological models. From these sets of models, it
is necessary to identify the ones that better represent the reservoir
heterogeneity, generally based on some attribute similarity crite-
ria. Some methods to rank geo-realizations consider volume-based
measures of oil or gas in place (OOIP or OGIP), the net porous
volume (NPV), the gross rock volume (GRV), or the connected
volume using various connectivity criteria [RA13]. After the mod-
els are identified, the best ones still need to be verified and
explored for the aforementioned reasons, which leads to a time-
consuming process.

1.2.3 The Simulation Model

Once the geological model contains the geological attributes,
reservoir engineers are responsible to generate a dynamic model
from the static model by integrating production data (e.g., pressure)
and laboratory data (e.g., fluid properties analysis) [GA11, RB15].
From the geological model, they produce the simulation model
or dynamic model through a process called upscaling [RB15] that
yields a coarser version of the geological model. The upscaled
models can be several times smaller than the geological model in
terms of resolution, which makes the capture of detailed reservoir
descriptions difficult. Big cell sizes (simulation grid) cause mod-
eling processes to be performed using average values which of-
ten mask situations dominated by the extremes, not by average
distributions [GA11]. An example is an area of very low per-
meability in the geological model that acts as a barrier to the flow
of fluids; after the averaging process this barrier may disappear.
Therefore, the flow behavior is not captured adequately in a model
that has a coarser grid. For this reason, reservoir engineers also
browse detail cells or small regions (outliers), since a single cell
may be responsible for situations such as leaking. Some recent re-
search has emphasized further how the transition between scales is
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one of the reasons why reservoir simulations can fail in predicting
fluid flow behavior [AG∗13, ACG∗14].

The simulation grid resolution is defined according to the
distribution of the reservoir properties [RB15]. The reason for
upscaling is that simulations are time and cost intensive when run
in large models. Also, reservoir engineers need to run these sim-
ulations (which can take hours, days or even months) in several
geological conditions which make this task even more complex.

1.2.4 Static Connectivity Analysis and Parameter Tuning

Reservoir engineers explore geological attributes as parameters
for better prediction of oil recovery. They identify spatial config-
urations of static properties, e.g., data correlations and geologi-
cal features (structures), in order to summarize optimal reservoir
development strategies and to better discover the dynamic reser-
voir performance prior to running costly and time intensive fluid
flow simulations. Due to its reliability, this task is better conducted
on the static geological models.

Much research has been devoted to developing fast perfor-
mance estimators as surrogates for flow simulation such as time
of flight [ZGR∗17]. These estimators do not aim to replace a full
flow simulation; rather, their value lies in rapidly determining pa-
rameter sensitivities and screening reservoir models or production
scenarios [dJVDJL09]. In particular, some efforts focus on using a
combination of static geological information to quantify reservoir
connectivity, a derived property that has already been proven to
have a strong correlation with the efficiency of hydrocarbon recov-
ery [HL10]. These static connectivity estimators (e.g., [MHS∗16])
are easy in concept, inexpensive in execution, and create an impor-
tant intermediate level between the reservoir characterization and
simulation studies for the assessment of reservoir productivity.

In a primary recovery, if a part of a reservoir is not connected to
a producing well, then the hydrocarbon present in that region can-
not be recovered. In secondary recovery using water injection, both
producing and injection wells need to connect to the same reservoir
geobody in order to create better sweep zones. Therefore, there is
a need to identify these regions. Connectivity is a necessary con-
dition for reservoir productivity. In particular, for the assessment of
optimum well placements, static connectivity analysis can be used
by engineers to identify multiple production scenarios, locate
promising candidates, and to identify only the most promising
scenarios for running dynamic simulations. Metrics to define con-
nectivity are commonly referenced as the so-called geobody and
reservoir-to-well connectivity and are derived in terms of multi-
ple geological properties such as facies, permeability and/or poros-
ity cut-off(s), as well as propagation algorithms to identify con-
nected grid cells.

All in all, engineers must define and assess a number of different
well placement and recovery scenarios to select optimal outcomes.
This procedure is called well placement optimization and involves a
highly exploratory process, where engineers progress through dif-
ferent stages such as geological analysis (e.g., connectivity), incor-
porating gradual changes in parameters, locating the well trajec-
tories, verifying connected areas, generating fluid flow simula-
tions, and verifying the predicted reservoir performance.

1.3 Team Collaboration and Decision Making

Despite the aid of automated tools and methods, the process of
locating optimal placement scenarios and recovery still remains
heavily exploratory and relies on the analysis and interpretation of
a series of specialists, who are the true driving force behind geolog-
ical modeling and well optimization. Group work and analysis are
also common for improving awareness of the data and reaching bet-
ter decision making. Teams of engineers, geologists, geophysicists,
and potentially other specialists may summarize recovery strate-
gies; summarize the results from flow simulations, identify in-
consistencies or interdependencies on the data, and finally present
optimal strategies for project managers and stakeholders.

2 Abstract Tasks

Figure 2: Abstract visualization tasks using the multi-level typol-
ogy introduced by Brehmer and Munzner [BM13].

Figure 2 describes a list of abstract tasks identified from our do-
main characterization. Our intention here is to provide an initial
characterization that can be used and further refined in subsequent
works.
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