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Figure 1: Compressive Volume Rendering exploits image smoothness to recover images from a small number of rendered pixels.
We present two non-adaptive methods that can achieve high quality recovery with as few as 20% of the pixels.

Abstract
Compressive rendering refers to the process of reconstructing a full image from a small subset of the rendered pix-
els, thereby expediting the rendering task. In this paper, we empirically investigate three image order techniques
for compressive rendering that are suitable for direct volume rendering. The first technique is based on the theory
of compressed sensing and leverages the sparsity of the image gradient in the Fourier domain. The latter tech-
niques exploit smoothness properties of the rendered image; the second technique recovers the missing pixels via a
total variation minimization procedure while the third technique incorporates a smoothness prior in a variational
reconstruction framework employing interpolating cubic B-splines. We compare and contrast the three techniques
in terms of quality, efficiency and sensitivity to the distribution of pixels. Our results show that smoothness-based
techniques significantly outperform techniques that are based on compressed sensing and are also robust in the
presence of highly incomplete information. We achieve high quality recovery with as little as 20% of the pixels
distributed uniformly in screen space.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

THe need to to efficiently process and analyze data sets
is recognized by various disciplines. As large screen

and high density displays are becoming commonplace, we
are faced with the additional challenge of adapting our visu-

alization algorithms so that they can produce better quality
large size images. In the context of a ray-casting based ap-
proach to volume visualization, the total rendering time is
usually proportional to the number of pixels in the rendered
image which in turn depends on the number of rays cast per
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pixel. Sophisticated illumination effects, high-quality data
filtering and out-of-core data management techniques make
the process even more expensive. It is therefore imperative
to employ acceleration strategies that reduce the overall cost
while maintaining image quality.

In this paper, we explore an image-order acceleration
technique that is inspired by the fact that volume ren-
dered images are typically spatially slowly varying and lack
sharp fluctuations such as textures. Owing to their inherent
smoothness, rendering every single pixel in an image is com-
putationally expensive and wasteful. An alternative is to ren-
der a subset of the pixels and infer the missing pixels by
leveraging the sparsity of the image in a transform domain
such as the Fourier or wavelet domain. This is highly desir-
able since it not only saves many costly ray-integration op-
erations, it also achieves compression. Initially proposed by
Sen and Darabi [SD11], this rendering approach is known as
compressive rendering and is an application of the theory of
compressed sensing (CS) [EK12]. Sen and Darabi [SD11]
reported promising recovery results with 75% of the pixel
samples.

We build upon the idea of compressive rendering specif-
ically in the context of volume rendering, where we pos-
tulate that volume rendered images, owing to their inher-
ent smoothness, should be recoverable from a much smaller
fraction of the pixels. Towards this end, we explore recent
techniques inspired from the image-processing community.
While these techniques can be viewed from different angles
(image restoration or completion, compression etc.), our in-
terest is in studying them from the point of view of com-
pressive volume rendering. It is unclear which method is the
most suitable for this purpose, specially when the fraction of
rendered pixels is very small as compared to the total number
of pixels. This paper aims to definitively answer this ques-
tion so as to guide researchers and practitioners in designing
more efficient volume rendering strategies.

Our first technique (Sec. 3.1.3) is an extension of the idea
of Sen and Darabi [SD11]. Instead of rendering the original
image, we render a subset of the gradient of the image and
exploit the sparsity of the discrete Fourier transform of the
gradient components to recover a gradient image that is most
consistent with the measurements. We then use a Poisson
solver to recover the original image. Unlike the approach of
Sen and Darabi [SD11], this approach does not suffer from
coherence issues since the Fourier basis is inherently inco-
herent with the canonical sampling basis. Moreover, the gra-
dient components of a volume rendered image are typically
more sparse in the Fourier domain as compared to the im-
age itself. Our results show an improvement over the results
of Sen and Darabi [SD11]. However, both methods quickly
deteriorate when the fraction of missing pixels is high.

In order to guarantee robustness to highly incomplete in-
formation, we explore methods that are fundamentally dif-
ferent from CS and employ smoothness instead of sparsity
priors. This is a more natural setting for this problem as
smoothness is a key property of volume rendered images.

Towards this end, we explore two methods namely total vari-
ation (TV) minimization (Sec. 3.2) and, variational mini-
mization of a smoothness norm in a spline space (Sec. 3.3).
Both of these methods predate CS but have not been ex-
plored in the context of compressive rendering. As the name
suggests, TV minimization attempts to minimize the total
variation norm that is intimately associated with the smooth-
ness of an image [NW13]. The latter method seeks to find a
smooth solution in a shift-invariant spline space (SS). This
is achieved by minimizing a least-squares type norm that pe-
nalizes non-smooth solutions [XAE12]. We show that these
smoothness inspired methods are much more resilient to
missing information as compared to the CS-based methods
(Fig. 1). Moreover, they also have a performance advantage
since the minimization process is less expensive as com-
pared to the pursuit strategies typically employed in CS.

The remainder of the paper is organized as follows. After
reviewing relevant prior art (Sec. 2), we present a detailed
description of our proposed methods (Sec. 3). These meth-
ods are then thoroughly compared and contrasted in terms
of image quality, sensitivity to the distribution of pixels, and
performance (Sec. 4). Even though we focus on image qual-
ity in the volume rendering setting, we show that smoothness
is also relevant in the general rendering context and leads to
significantly better recovery as compared to the state of the
art (Sec. 4.5).

2. Related Work
It is important to stress that our approach is fundamentally
an image-order acceleration approach and can be used in
conjunction with the plethora of object-order acceleration
techniques that are available. GPU-based ray-casting is the
state-of-the art approach to volume rendering [HKRs∗06].
Recent efforts have focused on data management techniques
that handle large datasets [BHP14], as well as compression
techniques for volumetric data [RGG∗12].

In the broader context of Monte-Carlo rendering, adaptive
image-order techniques have recently been used to reduce
the number of rays traced [RKZ12]. These techniques usu-
ally employ multiple passes, incrementally improving image
quality. In contrast, compressive rendering is a non-adaptive
approach that only traces rays through a subset of the pix-
els. It can however be extended to a second pass where the
placement of pixels is based on the results of the previous
pass [SD11]. Our focus however, is on the non-adaptive first
pass where we are interested in investigating the effect of the
initial non-adaptive distribution of pixels on image quality.

Transform domain strategies are no stranger to graph-
ics and visualization. There are a multitude of approaches
that exploit compressibility in well-known transform do-
mains such as the discrete cosine transform (DCT) and the
discrete wavelet transform (DWT). Interest in exploiting
transform domain sparsity is gaining momentum and started
with applications of compressed sensing to light transport
[PML∗09, SD09]. More recent works have explored these
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Method Property
CS-Wavelet Based on compressed sensing, assumes x is

sparse in the wavelet domain [SD11].
CS-Gradient Based on compressed sensing, leverages the

sparsity of the gradient of x in the Fourier do-
main.

TV Assumes that the x exhibits low total variation.
SS Incorporates a smoothness norm based on the

second derivatives of x.

Table 1: Summary of different methods

ideas in the context of sparsely representing volumetric
datasets [WAG∗12, GIGM12, XSE14].

There are some other lesser known transforms such as
shearlets [GL07] and curvelets [MP10] that are better able
to describe anisotropic features such as edges. However, in
order to use these in a compressive sensing framework, one
needs to employ a sampling basis that is incoherent with
these transform basis. Since compressive rendering makes
pixel measurements (corresponding to the canonical basis),
the choice of transform domain is constrained to the discrete
Fourier or cosine transforms.

Besides the approaches presented in this paper, there are
other recent approaches to missing data recovery that are
not considered in this paper and are a subject of future
work. Examples include dictionary learning [Ela10], ma-
trix completion [CR09], and tensor completion [LMWY13].
Some classical approaches to the problem of missing data
recovery include radial basis functions [Buh00] and inpaint-
ing [BSCB00]. These have already been explored previously
in the context of compressive rendering [SD11] and are not
considered here.

3. Recovery Methods
Let x denote the rendered image that is W pixels wide and H
pixels high. For convenience, we treat x as an N×1 column
vector, i.e. x = [x1 · · · xN ]

T where N =WH. We also restrict
attention to scalar-valued images with the assumption that
RGB images can be treated in an independent component-
wise manner. Instead of rendering all the pixels in x, we are
interested in rendering a small subset of the pixels. The ren-
dered pixels are given by

y = Sx, (1)

where y = [y1 · · · yM ]T is an M× 1 (typically M� N) col-
umn vector and S is a M×N binary sampling matrix. Each
row of S is zero everywhere except for the pixel location that
is to be retained. The recovery goal is then to estimate the full
image x from the rendered pixels y. Since the number of ren-
dered pixels is much smaller than the total size of the image,
this problem is inherently ill-posed. Some prior assumption
about x needs to be incorporated in order to make the recov-
ery process work. Table 1 summarizes the priors used in the
methods presented in this paper.

3.1. Methods Based on CS
This approach is similar to the work of Sen and
Darabi [SD11]. For the sake of comparison and complete-
ness, we review briefly the theory of compressed sensing
before proposing our solution that exploits sparsity of the
gradient components in the Fourier domain. More details
on compressed sensing can be found in the recent text-
book [EK12].

3.1.1. CS Background
Let x̂ ∈ RN be a sparse vector, i.e. it has a few non-zero
entries. Formally, sparsity is quantified by the `0-norm ‖·‖0,
that counts the number of non-zero entries. A vector x̂ is said
to be k-sparse if ‖x̂‖0 ≤ k. The sensing mechanism is mod-
elled as a set of linear measurements that yield the vector
y ∈ RM . In particular,

y = Ax̂, (2)

where A is an M×N sensing matrix with M � N. Even
though this system is underdetermined, it can be solved
uniquely using compressed sensing as long as A meets the
Restricted Isometry Condition (RIC):

(1−δ) ||x̂||22 ≤ ‖Ax̂‖2
2 ≤ (1+δ) ||x̂||22 , (3)

where δ ∈ (0,1) and ‖·‖2 indicates the `2-norm. Intuitively,
the RIC states that in a valid sensing measurement matrix A,
every possible set of k columns form an approximate orthog-
onal set. Matrices that have been proven (probabilistically)
to meet RIC include partial Fourier or cosine matrices (ran-
domly selected rows from the full discrete Fourier or cosine
transform matrix), Gaussian and Bernoulli random matrices
[CT06]. Under the condition of RIC, the corresponding re-
covery mechanism becomes non-linear and can be formu-
lated as the optimization problem

min ||x̂||0 subject to Ax̂ = y. (4)

This is an NP-hard problem. In practice, it is substituted by
an `1-minimization problem which is solved using a pur-
suit algorithm [TG07]. Provided that the RIC is satisfied, re-
covery accuracy depends on the sparsity of x̂; various error
bounds relating δ and k have been explored [EK12].

3.1.2. CS for Rendered Images (CS-Wavelet)
Usually, signals of interest such as rendered images are not
inherently sparse, but are sparse in a transform domain such
as the DWT or the DCT. In other words, the transformed
representation x̂ = Ψx approximates the original image well
with a few non-zero coefficients. Here, Ψ is an N ×N or-
thonormal matrix corresponding to a compression basis.
Substituting this transform domain representation into 1, we
obtain the measurement equation

y = SΨ
−1x̂. (5)

Letting A = SΨ
−1, it is clear that this equation corresponds

to the sensing equation 2, and recovery is possible as long
as the matrix SΨ

−1 satisfies the RIC. Verifying the RIC is
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Figure 2: Coherence results for different sensing matrices
(N = 642). The numbers indicate the standard deviation of
the Gaussian blurring filter in the Fourier domain, lower
values indicate greater blurring. The other abbreviations
are: ld - low discrepancy, ran - random, and par - partial
Fourier.
computationally difficult and a useful related notion is that
of coherence. The coherence of a sensing matrix A, µ(A), is
the largest absolute inner-product between any two columns
ai and a j:

µ(A) = max
1≤i< j≤n

|aT
i a j|

‖ai‖2‖a j‖2
. (6)

Intuitively, the lower the coherence, the better the sparse re-
covery via `1 minimization. When M� N, the coherence is
lower bounded according to µ(A)≥ 1/

√
M.

Another way to look at coherence is in terms of the sam-
pling matrix S and the compression matrix Ψ

−1. In order to
guarantee the RIC, the two must be incoherent. The work
of Sen and Darabi [SD11] exploits sparsity of the image
in the wavelet domain. Unfortunately, the wavelet domain
is not incoherent with point sampling. To improve incoher-
ence, they recover a blurred version xb of the original image
x, where xb = Φx, and Φ is an N×N matrix corresponding
to the Gaussian blurring filter. Their sensing mechanism can
be written as

y = SΦ
−1W−1︸ ︷︷ ︸

A

x̂b, (7)

where W−1 is the inverse DWT matrix, and x̂b is the DWT
of the blurred image xb. From the recovered coefficients x̂b,
the final image is obtained according to x = Φ

−1W−1x̂b.
Even though, the blurring operation improves the incoher-
ence somewhat, successful recovery is sensitive to the vari-
ance of the blurring filter Φ which needs to be adjusted on
a case-by-case basis. As our tests show, this method is also
very sensitive to the distribution of pixels and breaks down
when the fraction of missing pixels is high.

3.1.3. Gradient Recovery via CS (CS-Gradient)
In order to ameliorate coherence problems, we choose to
exploit sparsity in the discrete Fourier transform (DFT) do-
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Figure 3: Histogram of the absolute values of the DFT coef-
ficients of the engine image (left) and its derivatives (right).
The image and the derivatives were normalized to lie in the
range [0,1] before applying the FFT.

main. The RIC property of random partial Fourier matrices
is well-known. In other words, the Fourier domain is inher-
ently incoherent with point sampling measurements. Fig. 2
compares the coherence of the sensing matrices in the CS-
Wavelet method for a number of wavelet types as a function
of the fraction of missing pixels. Observe that, for all wavelet
types, coherence becomes higher as the fraction of missing
pixels increases, and the blurring filter only improves inco-
herence slightly. On the other hand, random partial Fourier
matrices exhibit very low coherence.

Rendered images are usually more sparse in the DWT do-
main as compared to the DFT domain [SD11]. In order to
improve sparsity in the DFT domain, we can recover the im-
age gradient rather than the image itself. For images that are
slowly varying, we expect that the gradient components are
more sparse in the DFT domain as compared to the image
itself (Fig. 3). Observe that rendered images are also sparse
in the gradient domain itself, and therefore, one can exploit
sparsity in the gradient domain. However, the theory of CS
dictates that one would need to make point measurements (of
the image gradient components) in the DFT domain. This is
suitable for applications such as MRI [PMGC12], but can-
not be realized in our case as the rendering process (bar-
ring applications such as frequency domain volume render-
ing [TL93]) typically makes pixel measurements.

Thus, instead of rendering the image x directly, we ren-
der the discrete gradient components x1 and x2. This can
be done by representing x in a basis spanned by a tensor
product (pixel reconstruction) kernel such as the bilinear B-
spline or the Mitchell-Netravali cubic kernel [PH10]. The
gradient can then be obtained by differentiating the kernel,
i.e. instead of weighting the incoming rays with the pixel re-
construction filter, we can simply weight them according to
the derivative of the kernel. Alternatively, one can use a box
filter for rendering and apply a finite differencing scheme to
obtain the gradient. Let y1 be an m× 1 column vector that
contains the horizontal component of the gradient measured
at m different locations according to the sampling matrix S.
Our sensing mechanism can be formulated as

y1 = SF−1x̂1, (8)
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where F is the 2D DFT matrix, and x̂1 denotes the 2D DFT
of the horizontal gradient component x1. Observe that A =
SF−1 is a partial Fourier matrix provided that the location
of the pixels is random. An approximation of x̂1 is obtained
via the following `1 minimization:

min‖x̂1‖1 subject to ‖SF−1x̂1−y1‖2 ≤ ε. (9)

An approximation of the DFT of the vertical component,
x̂2, is obtained similarly. Computing the pixel values from
gradient components is a problem that frequently arises in
gradient-domain image processing applications. We follow
the approach of Pérez et al. [PGB03] and apply a Poisson
solver—with Dirichlet boundary conditions—to the diver-
gence of the gradient.

3.2. Recovery via TV minimization (TV)
The total variation seminorm of an image is defined as:

‖x‖TV := ∑
i, j
|xi+1, j− xi, j|+ |xi, j+1− xi, j|, (10)

where xi, j — with slight abuse of notation — is the pixel
value corresponding to the pixel with image-space coordi-
nates (i, j). In other words, it is the sum of the `1 norms of
the horizontal and vertical components of the gradient ob-
tained via forward differencing. First proposed by Rudin et.
al [ROF92], the TV-norm is low for images that are smooth
and high for images that have high variability. It is also con-
nected with sparsity; images that are sparse in the gradient
domain also exhibit low TV. This property has been empiri-
cally known for some time and has been used in several ap-
plications such as denoising, inpainting, and recovery from
partial Fourier measurements (see e.g [CEPY05]). The pre-
cise theoretical connection with CS has only recently been
established [NW13].

Despite its success in image processing applications, TV
minimization (or regularization) has not been used in the
compressive rendering context which, at its core, is an im-
age restoration problem akin to inpainting. Our goal here is
to investigate how well this method performs as compared
to the CS-based methods described earlier. The precise min-
imization problem that we wish to solve is given by

min‖x‖TV subject to ‖Sx−y‖2 ≤ ε, (11)

where S and y are as described in 1. This is a well-
studied minimization problem and fast algorithms have re-
cently gained popularity (e.g. split Bergman [GO09] or
NESTA [BBC11]).

3.3. Recovery in a Splines Space (SS)
The third method we consider can be regarded as a scattered
data approximation problem [XAE12]. It attempts to find a
smooth solution in a prescribed space that is spanned by the
uniform shifts of a kernel function ϕ(t) where t ∈ R2.

Let j1, . . . , jN denote the pixel locations corresponding to

the pixel values in x, and let k1, . . . ,kM denote the pixel lo-
cations corresponding to the pixel values in y. The goal is to
find the coefficients c = [c1 · · · cN ]

T of the approximation:

f (t) :=
N

∑
n=1

cnϕ(t− jn), (12)

such that the approximation closely matches the measured
pixel values, i.e. f (km)≈ ym for m = 1, . . . ,M. Additionally,
it is desired that the function f (t) be smooth. A useful no-
tion of smoothness is provided by the second-order Beppo-
Levi seminorm. For functions g(t) and h(t), the second-
order Beppo-Levi inner-product is defined as

〈g,h〉BL2 := 〈∂t1t1 g,∂t1t1 h〉+2〈∂t1t2 g,∂t1t2 h〉+ 〈∂t2t2 g,∂t2t2 h〉
(13)

where 〈·, ·〉 denotes the standard L2 inner-product. The
BL2 inner-product induces a seminorm which we denote
as ‖g‖2

BL2
:= 〈g,g〉BL2 . In contrast to the TV seminorm in-

troduced earlier, the BL2 seminorm is defined in the con-
tinuous domain and measures smoothness via the second-
order derivatives. Smooth functions have a low BL2 norm
and vice-versa. Our minimization problem in this setting can
now be formulated as

min
f

λ‖ f‖2
BL2 +

M

∑
m=1

( f (km)− ym)
2, (14)

where the minimization is to be carried out over all func-
tions f that are of the form (12). The first term in the above
equation measures the smoothness of the solution f (t) by
the energy present in all of its second derivatives, and the
second term is a fidelity term that attempts to fit the function
f (t) to the available data.

In order to solve this minimization problem, we need to
choose a kernel function ϕ(t). There are many choices avail-
able such as the bilinear or bicubic B-splines etc. In order to
ensure consistency with the other recovery methods, and to
obtain good quality approximations, we choose the optimal
interpolating cubic B-spline proposed by Blu et al. [BTU01].
It is defined as

β
3
I (t) := β

3(t)− 1
6

d2

dt2 β
3(t), (15)

where β
3(t) denotes the univariate uniform centered cubic

B-spline. The corresponding bivariate kernel is obtained via
a tensor product, i.e. ϕ(t1, t2) = β

3
I (t1)β

3
I (t2). Observe that,

with this choice of ϕ, the coefficient vector c is the same as
the vector x (since the kernel is interpolating), and our mini-
mization problem can be written equivalently (see [XAE12]
for details) as

min
x
‖Sx−y‖2

2 +λxT Hx, (16)

where the N×N matrix H is defined as

Hp,q = 〈ϕ(·− jp),ϕ(·− jq)〉BL2 . (17)

Since (16) involves an `2 norm, we can differentiate with
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respect to x to obtain the following least-squares problem

(ST S+λH)x = ST y, (18)

whose solution yields the minimizer of (16). This least-
squares problem can be efficiently solved using the conju-
gate gradient method since the matrix (ST S+ λH) is sym-
metric and positive definite. The matrix H does not need to
be explicitly computed or stored since its action on a vector
x is equivalent to a filtering operation; the filter weights are
obtained via (17).

4. Results and Discussion
We generated volume rendered test images from datasets us-
ing our own volume renderer as well as Paraview. All of the
test images were generated at a resolution of 1200×1200 on
a workstation with a quad-core, 3.4 Ghz Intel R©CoreTMi7-
3770 CPU with 16GB RAM. All of our recovery experi-
ments were conducted in Matlab where we used the NESTA
solver [BBC11] to carry out `1 (CS-Wavelet, CS-Gradient)
and TV minimization. We used Matlab’s conjugate gradient
solver to solve the least-squares minimization (SS) problem
(16). For parameter settings, we used 20 for the standard de-
viation of the blurring filter Φ for the CS-Wavelet approach
which, according to the results of Sen and Darabi [SD11],
balances the tradeoff between incoherence and blurring ef-
fects. We used the same value of 10−2 for the tolerance and
stopping criteria of the NESTA solver in our CS-Wavelet,
CS-Gradient and TV experiments. This value was empiri-
cally chosen to provide a good tradeoff between recovery
quality and runtime. For the least-squares solver (SS), we
used the value 10−2 for the regularization parameter λ as
suggested by Xu et. al [XAE12].

We recovered the images from a fraction of the pixels. We
experimented with different percentages of pixels that are
removed via two different pixel distribution algorithms ex-
plained in the following section. To measure recovery qual-
ity, we computed the peek signal-to-noise ratio (PSNR) val-
ues measured in decibels (dB). The PSNR is a well-known
quality metric and is a good way to quantify large differences
in recovery trends exhibited by the different techniques. We
also computed error images in the CIELUV colorspace ac-
cording to the work of Ljung et al. [LLYM04]. In addition
to measuring the recovery quality, we also measured the per-
formance of each method with respect to the timing for re-
covery.

4.1. Choice of Distribution Algorithm
Choosing a pixel distribution algorithm wisely is of signifi-
cant importance as our goal is to recover volume rendered
images from a small fraction of the pixels. A straightfor-
ward way of choosing pixels is the random distribution, ob-
tained by randomly drawing a number between 1 and N
where N is the total number of pixels. This strategy how-
ever leads to inhomogeneous regions (Fig. 4). A better strat-
egy is to distribute the pixels as uniformly as possible so

Figure 4: Masks with 50% missing pixels; left: random, and
right: LD via pixel shuffle.
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Figure 5: Random vs. LD distributions.

that the overall discrepancy [PH10] is low. A potential dis-
tribution that achieves low discrepancy (LD) can be obtained
by the Poisson disk sampling algorithm [PH10]. This algo-
rithm achieves very good blue-noise distributions. However,
a disadvantage is that it is not progressive, i.e. a distribution
with a high percentage of coverage does not contain a dis-
tribution with a low percentage of coverage. This is an im-
portant property for compressive rendering as it allows for
the progressive update of an image. A distribution that does
satisfy this property is provided by Anderson’s pixel shuffle
algorithm [And93]. This algorithm is based on the Fibonacci
numbers, and attempts to fill in the biggest gaps in the dis-
tribution to maintain a low overall discrepancy (Fig. 4).

4.2. Random Distribution vs. Pixel Shuffle
We used the two aforementioned distribution algorithms to
compare the recovery quality of all the methods. The quan-
titative results for the head dataset are shown in Fig. 5, and
some of the qualitative results are shown in Fig. 6. We can
observe that our CS-Gradient method produces slightly bet-
ter results compared to the CS-Wavelet method. The CS-
Wavelet method seems to be highly sensitive to the distri-
bution of pixels. In our tests, we observed that, when the
percentage of missing pixels is high, the random distribu-
tion leads to strong speckling artefacts. The LD distribution
achieves a lower coherence (Fig. 2) and thefore yields better
results. However, it also exhibits directional artefacts (Fig. 6:
second column). In comparison, our CS-Gradient method
fares much better (Fig. 5). It favours the random distribu-
tion when the fraction of missing pixels is high. This is to be
expected as the random distribution leads to partial Fourier
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Figure 6: Recovery results for all methods with LD distribution (50% missing pixels). The grayscale images indicate the
magnitude of the error computed in the CIELUV space; the error range range [0,20] is linearly mapped to a grayscale colormap.

matrices with better incoherence when the fraction of miss-
ing pixels is high (Fig. 2). Additionally, we also did not no-
tice any objectionable artefacts with this method (Fig. 6:
third column). However, notice that both CS-Wavelet and
CS-Gradient quickly deteriorate when the fraction of miss-
ing pixels is high.

The smoothness-based methods (TV and SS) significantly
outperform the CS-based methods. Both seem to favour the
LD distribution over the random distribution, the differences
are indeed quite stark (Fig.5). In terms of reconstruction
quality, the two methods, in conjunction with the LD dis-
tribution are quite comparable when the fraction of missing
pixels is high (Fig.1 and Fig. 6). The TV method seems to
have an edge over SS when the fraction of missing pixels
is low. In the following results, we focus on the smoothness
based methods and compare them with CS-Wavelet in com-
bination with the LD distribution.

4.3. Sensitivity to Image Content
To compare the sensitivity of the algorithms to images with
different smoothness characteristics, we used Paraview to
render DVR images of the foot dataset and isosurface im-
ages of the aneurysm dataset. Some qualitative results are

shown in Fig. 8. In terms of recovery quality, TV and SS pro-
duce similar results; SS recovery is somewhat sharper in the
boundary regions while the TV method seems to preserve
edges better. From Fig. 8, we can see that our TV and SS
methods can produce consistent recovery results over differ-
ent fractions of missing pixels. The higher PSNR values for
the foot images corroborate the fact that these methods per-
form much better when the image content is slowly varying.
The results for the aneurysm dataset show some degradation
when the fraction of missing pixels is high. However, it is
not as severe as it is for the CS-based methods.

In order to investigate the importance of the smoothness
of the image, we experimented with a synthetic texture im-
age that has both high and low frequencies alike (Fig. 7).
Both TV and SS methods cannot produce acceptable recov-
ery even with 10% missing pixels. As summarized in Table
3, this image lacks smoothness which is a key assumption
made by all the recovery algorithms.

4.4. Performance Aspects
The reconstruction time for different fractions of missing
pixels is shown in Fig. 9. We reckon that our SS algorithm
outperforms all the other methods. This is due to the fact that

c© 2015 The Author(s)
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Figure 8: Recovery results for foot and aneurysm data via TV and SS

Figure 7: Recovery results for high frequency texture image.

Head Engine
600×600 1754.92s 1093.61s
900×900 3955.13s 2442.28s

1200×1200 7067.32s 4249.44s

Table 2: Rendering timing for different resolutions.

SS utilizes a least-squares solver which is more efficient as
compared to `1 and TV minimization. CS-Gradients and TV
minimization exhibit comparable performance trends while
CS-Wavelet lags behind by a wide margin due to the fact that
it needs to evaluate the forward and inverse DWT at every it-
eration which is slower as compared to the FFT.

It should be stressed that these performance results only
compare the trends shown by the different algorithms for im-
age recovery. The overall cost of the rendering operation is
the sum of the time spent casting rays and the time it takes
to recover the full image from the rendered subset. Since
rendering time can vary greatly depending on the quality
of the renderer, compressive volume rendering only makes
sense when the time spent tracing rays is much greater than
the image recovery time. As an example, Table 2 shows
the total render time for the head and engine datasets using
our single-threaded software renderer that uses high-quality
tricubic interpolation for both the scalar data and the gradi-
ent. Rendering one-fourth of the image pixels cuts down the
rendering time by several thousand seconds. The recovery
time is only a tiny fraction of this. At the very least, com-
pressive rendering is a viable strategy to accelerate offline
volume rendering tasks.

In an interactive environment, one would need to con-
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Figure 9: Timing results for head data via different recovery
methods (1200×1200 images).

sider additional factors such as the parallelizability of these
recovery methods, and their implementation on the GPU.
The work of Zach et al. [ZPB07] presents a GPU imple-
mentation of TV-L1 minimization; they demonstrate real-
time optical flow calculation with 30 FPS for a resolution
of 320 × 240 pixels. However, they used an iterative con-
jugate gradient solver to do the TV-L1 minimization whose
convergence is not as fast as compared to methods such as
NESTA [BBC11]. Least-squares linear systems appear in
various problems in Computer Graphics and have a long
histroy of successful GPU acceleration [PF05]. For the SS
method, significant speed up can be obtained as the matrix
operations in equation 18 can be expressed as fast image fil-
tering operations.

Our focus in this work is on investigating the theoretical
aspects of the recovery algorithms in the context of volume
rendering. With a careful consideration of the inherent paral-
lelizability of these methods, we anticipate significant gains
in terms of efficiency or quality. For instance, one could em-
ploy a higher quality renderer and only trace a fraction of
the rays to achieve a better overall image for the same com-
putational cost. It is also possible to improve reconstruction
quality in a two-pass rendering scheme where the first pass
recovers a low quality image that can be used to adaptively
trace rays according to the content of the image.

c© 2015 The Author(s)
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Figure 11: Recovery results via TV and SS

Image Category TV/SS with LD
Engine, Head and
Foot (Fig. 6, Fig. 8)

DVR: very smooth image. Consistent recovery results over different fractions of missing pixels.

Watch (Fig. 11) Physically-based rendering:
smooth image, very few
small scale details.

Good recovery results even with high fractions of missing pixels.

Aneurysm (Fig. 8) ISR: not so smooth, some
small scale details and sharp
edges.

Acceptable recovery with about 50% missing pixels but some degrada-
tion when the fraction of missing pixels is high.

Synthetic (Fig. 7) Non smooth: lots of small
scale details and edges.

Unacceptable recovery even with a very small fraction of missing pixels.

Table 3: Performance summary of TV and SS for different types of images.

Figure 10: Upscaling results via TV and SS

4.5. Other Applications
The methods presented in this paper can also be applied
to ray-traced images. We tested the recovery results on the
watch image generated using the physically-based renderer
LuxRender. The original image took several hours to render.
Fig. 11 shows the comparisons between different algorithms.
As expected, our TV and SS methods can produce good re-
covery results even with 50% missing pixels. For 70% miss-
ing pixels, the results are acceptable but do exhibit subtle
artefacts.

We can also use these methods for image up-scaling, i.e.
we can render at one resolution but recover at a higher reso-
lution (also known as super resolution). In this case, we gen-
erated an image with higher resolution from a full low reso-
lution image. The pixels from the low resolution image are
mapped to the high-resolution image and the missing pixels

are recovered. Fig. 10 demonstrate the results for this appli-
cation. The images shown in the bottom row were upscaled
from a low resolution 600×600 image, which is equivalent
to the original formulation with 75% missing pixels. The re-
sults are slightly worse than the case of image recovery at the
same resolution (see Fig. 1), but the overall quality remains
acceptable.

5. Conclusion
We presented three different methods for recovering images
from a subset of the pixels. Our results show that the CS-
based approaches are not suitable for this problem as we
are restricted to making pixel measurements. The previously
proposed approach (CS-Wavelet) exhibits strong artefacts
when the fraction of missing pixels in high. Our attempt
to improve the method (CS-Gradient) only shows slight im-
provements. On the other hand, smoothness-based methods
(TV and SS) are much more suitable for this task and are
able to recover images successfully even when the fraction
of missing pixels is high. A summary of the recovery results
based on the smoothness-inspired methods is shown in Ta-
ble 3. For performance considerations, we advocate the SS
method as it is based on a least-squares solver. In future,
besides exploring the matrix and tensor completion meth-
ods mentioned earlier, we are also interested in further com-
paring and contrasting the smoothness-based methods in an
interactive volume rendering environment, both in terms of
performance and in terms of quality with respect to percep-
tual metrics.
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